Graphenea logoGraphenea is a private European company (based in Spain) focused on the production of high quality graphene for industrial applications. Graphenea produces both CVD graphene (using Aixtron’s Black Magic equipment) and Graphene Oxide materials.

The company offers graphene on several substrates and can also transfer the graphene to your own substrate in-house.


In 2020 Graphenea launched a dedicated Graphene Foundry. The company can take care of CVD graphene synthesis, transfer and device fabrication and deliver a fully tested graphene-based chip to the customer. This service reduces product development time and costs and Graphenea offers a reliable supply of graphene-based chips from prototyping to scale production.

In 2021, Graphenea updated us that its CVD graphene revenue in 2020 was 1.56 million Euro. The company expects to continue and grow at a CAGR of around 30% in the near future. Its current yearly production capacity is 8,760 200 mm wafers, but the company plans to increase that 25-fold in coming years.

Graphenea’s main CVD graphene applications are in Biosensors, Photosensors and Photonics.

https://www.graphenea.com

Company Address: 
Tolosa Hiribidea 76
20018 Donostia-San Sebastian Guipúzcoa
Spain

The latest graphene news from Graphenea:

Graphmatech, Graphenea, and Northvolt produce graphene oxide from recycled EV batteries

Graphmatech, Graphenea, and Northvolt have announced their success in up-cycling end-of-life EV batteries into graphene oxide at industrial pilot scale. This breakthrough uses the material left after Northvolt has extracted valuable metals and minerals. Until now, that remaining material was left as waste.

Emma Nehrenheim, Chief Environmental Officer of Northvolt, comments: “The upcycling of graphene oxide from recycled batteries represents a great development in our pursuit of a sustainable battery industry in Europe. Batteries contain an abundance of valuable materials which we can recover to reduce our dependence on mining and producing fresh materials. We are proud to have contributed to this development.”

Graphenea, Lantania and UPM develop graphene-enhanced additive for cement and concrete

Graphenea, Lantania (an international group that builds large transport, water and energy infrastructures) and the Polytechnic University of Madrid (UPM) recently developed a graphene-enhanced additive that enhances the expected useful life of concrete by 50%, as well as its resistance to adverse environmental conditions and its mechanical behavior. After verifying its effectiveness in the laboratory, the new additive was tested on a non-structural element of the Almudévar Reservoir construction project.

Graphene cement enhancer developed and tested by Graphenea and Lantania image

The test was conducted by adding an improved graphene admixture to concrete with a 30 MPa compressive strength. Its overall efficacy was evaluated during mixing in the concrete plant, when still fresh and through noting the effects on the concrete during transport and placement. Mechanical behavior and durability tests in aggressive environments were then carried out.

Graphenea launches $99 miniGFET fully-packaged devices

Graphenea launched two new products out of its Graphene Foundry, which they call mGFET or miniGFET. This is Graphenea's highest value-chain products, which are manufactured and packaged in chip carriers, and can be used together with the freshly released Graphenea Card for seamless sensor development.

Graphenea miniGFET photo

The mGFET is available from $99, and as it is a fully-package device, it is ready to be integrated into standard electronics. Order volume can range from a few devices for early prototyping, to JEDEC trays with hundreds of devices which are compatible with automated pick & place routines.

International collaboration conducts comparison of Raman spectroscopic analysis of CVD-grown graphene

The results of an international comparison of the measurement of graphene, led by NPL, have been released. The work was conducted through the Versailles Project on Advanced Materials and Standards (VAMAS) and in collaboration with institutes from around the world.

The international interlaboratory comparison (ILC) outlined improvements that reduce measurement uncertainty, in some cases by a factor of 15, and which will be the basis for a new international standard which is currently under development within ISO/IEC for Raman spectroscopy. This will aim to become a verified source of data and ultimately provide more accurate and precise measurement standards for the global graphene industry.

Graphenea Foundry launches new GFET process

This is a sponsored post by Graphenea

Graphenea has announced that, following the release of its GFET S30, it has developed a High-K Metal Gate (HKMG) manufacturing process to create Field-Effect Transistor (FET) structures on graphene, or GFETs. This process is now available under the dedicated GFAB service, starting February 2022.

Graphenea High-K Metal Gate (HKMG) manufacturing process image

HKMG structures triggered a revolution in Si electronics when they were introduced during the early 2000’s, creating an alternative to SiO2 gate dielectrics that paved the way for further scaling. HKMG technology indeed enabled Moore’s law to continue, providing increased capacitance and lower current leakage than the previously state-of-the-art SiO2 tech. The most common FET architecture to modulate the conductance in graphene uses a SiO2 gate dielectric grown on top of a heavily doped Si substrate. Whereas this structure is easy to implement, it suffers from excessive current leakage when the SiO2 layer is thinned down, often rendering devices unusable. Moreover, the substrate acts as a global backgate, forbidding manipulation of individual GFET devices, which is essential for many applications.

Tags: