Graphene Oxide

Ionic Industries plans for a GO-SuperSand pilot plant

Ionic Industries, formerly known as Grafitech, is a wholly owned subsidiary of the Australian Strategic Energy Resources. It has released the results of an engineering scoping study for its planned pilot plant, to compliment the previously released marketing study for SuperSand. The studies confirm the economic viability of the planned pilot scale graphene oxide and SuperSand facility.

Ionic Industries' GO SuperSand image

Ionic has commissioned Minnovo Pty Ltd, an independent engineering group, to examine the feasibility of a pilot plant to produce graphene oxide (GO) and multiple SuperSand products using Ionic’s technology. Ionic will concentrate on two areas where its research and development teams have already made significant advances: graphene based high performance energy storage devices, and filtration in various industries for environmental pollutant decontamination and resource extraction.

LFP battery cathode improved by using graphene

Researchers at the Harbin Institute of Technology in China and the University of Michigan in the US demonstrated improved LFP battery cathode, augmented by reduced graphene oxide. The scientists used reduced graphene oxide (rGO) in LFP battery cathodes to create a new high surface area 3D composite.

rGO improved LFP battery cathode image

LFP (or LiFePO4) is a kind of Li-Ion rechargeable battery for high power applications, such as electric vehicls, Power Tools and more. LFP cells feature high discharging current, non explosive nature and long cycle life, but its energy density is lower than normal Li-Ion cell. In this study, the researchers created the composite using a nickel foam template that was coated with layers of graphene oxide. The graphene oxide reduced as the LFP nanoparticles were synthesized in a simple technique that allows larger amounts of the LFP to be loaded into the carbon material.

New GO-enhanced composite material shows promise for marine applications

Researchers from the VIT University in India managed to synthesize and characterize unique graphene oxide reinforced composites (prepared by colloidal blending), with potential for benefiting applications like electronics with desired dielectric properties, such as embedded capacitors. The composite's excellent stability and anti-corrosive properties make it suitable for marine and naval applications.

GO-enhanced composite for marine applications by VIT image

The composite, referred to as PEDOT-TMA/PMMA/GO, were examined by various means, namely UV–Vis spectroscopy, X-ray diffraction, thermogravimetric analysis, Fourier transforms infrared spectroscopy, FT-Raman spectroscopy, atomic force microscopy (AFM) and scanning electron microscopy. It was demonstrated that the GO was homogeneously dispersed in the polymer matrix. An increase in surface roughness as a function of GO loading was also found, as well as a significant improvement in the thermal stability of composites. The composites show high values of dielectric constant and low values of dielectric loss.

Wrinkled graphene oxide could create body-like surroundings for cell growth

Brown University researchers developed a simple method of creating environments on which to culture cells using graphene, that relies on a technique that makes small wrinkles in graphene sheets. These textured surfaces for culturing cells in the lab manage to copy the intricate environment in which cells grow in the body.


Cell culture is usually done in the lab in petri dishes and on other flat surfaces. The body, however, creates much more complex environments for cells to grow. Research has shown that a cell’s physical surroundings can influence its shape, physiology, and even the expression of its genes, so scientists are looking for ways of culturing cells in lab conditions that are a bit more complex and close to body-made environments. The surfaces might also be used to test drugs in the lab, or perhaps as biomimetic surfaces for implantable tissue scaffolds or neural implants.

Scientists manage to 3D print graphene aerogels with tailored architectures

Researchers at the Lawrence Livermore National Laboratory created graphene aerogel microlattices with an engineered architecture using a 3D printing technique known as direct ink writing. These lightweight aerogels have high surface area, excellent electrical conductivity, mechanical stiffness and exhibit supercompressibility (up to 90% compressive strain). In addition, the researchers claim that these 3D printed graphene aerogel microlattices show great improvement over bulk graphene materials and much better mass transport.

A common problem in creating bulk graphene aerogels is the occurrence of a largely random pore structure, thus excluding the ability to tailor transport and additional mechanical properties of the material for specific applications such as batteries and sensors. Making graphene aerogels with engineered architectures is greatly assisted by 3D printing, which allows to design the pore structure of the aerogel, permitting control over many properties. This development, as per the scientists, could open up the design space for using aerogels in novel and creative applications.

Australian scientists design a unique process for making graphene 3D display

Researchers at Australia's Swinburn University of Technology designed a graphene-based technique to create a 3D pop-up floating display. The scientists created nanoscale pixels of refractive index (the measure of the bending of light as it passes through a medium) made of reduced graphene oxide in a process that does not involve heat, which they say is important for the subsequent recording of the individual pixels for holograms and naked-eye 3D viewing.

The team explains that by changing the refractive index, it is possible to create many optical effects. This new technique can be leveraged to achieve compact and versatile optical components for controlling light and can create the wide-angle display necessary for mobile phones and tablets. The scientists believe that this new generation digital holographic 3D display technology could also have applications for military devices, entertainment, remote education, and medical diagnosis as well as lay foundation for future flexible and wearable display devices and transform them for 3D display.

Graphene-based SuperSand aims to replace activated carbon

Strategic Energy Resources logoIonic Industries, a subsidiary of Strategic Energy Resources, announced the completion of an independent marketing report on the potential of its graphene-based SuperSand product. This product is meant to be a potential substitute for activated carbon and can offer equal or better performance at a lower (or at least comparable) cost. 

The report yielded positive findings that support the company's decision to make SuperSand the first of its products to be produced by its planned graphene oxide manufacturing pilot plant, for which an engineering study is almost complete (with commencement of construction of the pilot plant planned for later in 2015).


Copyright 2009-2015 Metalgrass software