Haydale announces project with Viritech to develop graphene-enhanced epoxy resins for hydrogen storage vessels

Building on the Memorandum of Understanding (MOU) signed with Viritech in September 2021, Haydale, has announced the next phase with the cleantech engineering company to develop nano-enhanced epoxy resins for hydrogen storage vessels.

The £97,750 Storage of Hydrogen and Nanomaterial Enhancement ('SHYNE') project will run for an initial period of seven months, starting in March.

Researchers show that stretching can change the electronic properties of graphene

A research team led by the University of Basel has found that the electronic properties of graphene can be specifically modified by stretching the material evenly.

The researchers, led by Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel, have studied how the material’s electronic properties can be manipulated by mechanical stretching. In order to do this, they developed a kind of rack by which they stretch the atomically thin graphene layer in a controlled manner, while measuring its electronic properties.

Graphene-enhanced cement could help build more durable roads and cities

Northwestern University researchers have added graphene nanoplatelets to cement, resulting in smarter, more durable and highly functional cement.

With cement being the most widely consumed material globally and the cement industry accounting for 8% of human-caused greenhouse gas emissions, civil and environmental engineering professor Ange-Therese Akono turned to nanoreinforced cement to look for a solution. Akono, the lead author on the study and an assistant professor in the McCormick School of Engineering, said nanomaterials reduce the carbon footprint of cement composites, but until now, little was known about its impact on fracture behavior.

MSI is now shipping its graphene-enhanced backplate RTX 3000 graphic cards

Last month MSI revealed that it is utilizing graphene composites in its RTX 3000 series GPUs. The new graphic cards are now shipping globally (the cost in the US is $1,699).

MSI uses a graphene composite material as the backplate of the GPU, which is traditionally made of plastic. MSI says that the graphene composite is 4X stronger than its previous plastic backplate, and offers much higher (20X) heat dissipation performance.

MSI uses graphene composite in its graphic cards for improved durability and heat transfer

Update: the MSI RTX 3000 graphene-enhanced GPUs are now shipping

MSI, a global computer hardware manufacturer, has revealed that it is utilizing graphene composites in its RTX 3000 series GPUs.

 MSI uses graphene in its graphic cards image

It seems that the graphene composite parts are replacing the backplate, traditionally made of plastic, and provide greater heat dissipation performance and better stiffness to handle the weight of the entire card while still weighing less than plastics.