Haydale reports strong commercial progress in graphene-enhanced composites

Haydale logoHaydale, the global advanced materials group, has announced that strong commercial progress has been made with an unspecified global composite materials group to enhance mechanical properties for selected products in their range of materials, through a commercially funded contract.

Over the last 12 months, Haydale has completed a series of pre-production trials for this customer (who for commercial reasons cannot be named) to enhance these selected products' mechanical performance through the incorporation of graphene in a range of world-wide industrial applications. Haydale reports that to date, it has been paid approximately $150,000 USD by the Customer for these trials.

Spotlight: Seevix's dragline spidersilk promises elastic, strong and stable fibers

The graphene-enhanced composites market is on the rise with many applications popping up around the world. While graphene-enhanced composites are exciting and yield properties like a substantial mechanical strength and conductivity boost, other advanced materials are being developed worldwide to compete or complete graphene's attributes.

Seevix dragline spidersilk image

One such fascinating material is an artificial dragline spidersilk, developed by an Israel-based startup called Seevix Material Sciences. We contacted Dr. Shmulik Ittah, Co-Founder and CTO at Seevix Material Sciences, to give us a short review of the Company's promising material. Dragline spidersilk is known as an extremely strong fiber, that also manages to be highly elastic and stretchable. In fact, it can stretch up to 30% of its initial length. Spider silk is thus a unique phenomenon in the materials world, toting two such seemingly contradictory properties which usually do not co-reside in one material, whether natural or synthetic.

Directa Plus signs contract with existing client for graphene-enhanced accessories

Directa Plus logoDirecta Plus, a producer and supplier of graphene-based products, recently announced that it has reentered into a 12-month exclusivity agreement and 9-month development agreement with an existing global luxury accessories customer, to produce graphene-enhanced accessories with increased mechanical properties.

'The value of the exclusivity and the development agreement, ahead of entering into an anticipated commercial contract, amounts to approximately €130,000,' the firm said.

First Graphene to work with SupremeSAT on graphene-enhanced components for miniature satellites

First Graphene logo imageAdvanced materials company First Graphene has announced that it has entered into a binding Memorandum of Understanding with SupremeSAT for the development of graphene-enhanced components for SupremeSAT's Miniature Satellite Assembly Project. The collaboration with FGR will aim to develop graphene-enhanced components, for both strength and weight reduction, and also heat and radiation shielding.

SupremeSAT is working on the Project with EnduroSAT of Bulgaria. Two leading universities in the USA will be joining this project shortly. The Project will test satellite interconnectivity and data exchange between satellites and a data relay within a constellation. Initially a duo of 1.5U Cube Satellites will be assembled at SupremeSAT's Satellite Assembling facility - Pallekele - Kandy, with hardware for the satellites, training and other variants of engineering support coming from EnduroSAT.

Graphematech develops a simple, scalable method for coating polymer powder and granular with a layer of Aros Graphene

Sweden-based Graphematech, a startup company that develops and sells novel graphene-based nanocomposite materials and services, has announced the development of a scalable method for coating polymer powder and granular with a layer of its Aros Graphene. The Company sees this is a major boost to the polymer composites industry.

Graphematech develops a simple and scalable method for coating polymer powder and granular with a layer of Aros Graphene image

This newly developed method is said to be very efficient for obtaining high quality dispersion of Aros Graphene additive inside a polymer matrix without the use of high shear forces in melt mixing. It enormously reduces production costs and minimizes property degradation for both the polymer matrix and the additive while maintaining high quality and homogeneous composite. The invented method can be also applied for coating polymer powder with different materials such as metals, ceramics, fibers, cellulose and more.

Graphene Study 2018 - Sweden June 1-6Graphene Study 2018 - Sweden June 1-6