The Graphene Flagship is looking for new industrial partners for its core 3 project

The Graphene Flagship has announced a call out for new industrial partners to bring specific industrial and technology transfer competences or capabilities that complement the present GF consortium in the next core project (Core 3).

The Graphene Flagship is looking for companies with specific expertise - for example MRAM tools developers to leverage solutions for graphene-spintronic stacks, developers of graphene related materials based laser systems and instrumentations for coherent Raman imaging, makers of graphene-based fibers, yarns and textiles, automotive companies with expertise in fuel-cells, industrial graphene-based supercapacitors makers and more.

The Graphene Flagship announces its 2019-2030 graphene application roadmap

The EU Graphene Flagship has published its graphene application roadmap, showing when the flagship expects different graphene applications to mature and enter the market.

Graphene Flagship roadmap 2019-2030 photoAs can be seen in the roadmap above (click here for a larger image), the first applications that are being commercialized now are applications such as composite functional coatings, graphene batteries, low-cost printable electronics (based on graphene inks), photodetectors and biosensors.

Graphene enables low-dimensional spintronics at room temperature

Graphene Flagship researchers produced graphene-based spintronics devices that utilize both electron charge and spin at room temperature. Demonstrating the spin’s feasibility for bridging distances of up to several micrometres, these results may open the door to new possibilities for integrating information-processing and storage in a single chip.

The Graphene Flagship program recognizes the potential of spintronics devices made from graphene-related materials. Researchers from different universities successfully showed that it is possible to manipulate graphene’s spin properties in a controlled manner at room temperature. These results inspire new directions in the development of spin-logic devices and quantum computing. “With miniaturization a major driving force behind the electronics industry, graphene opens new possibilities for compacting spin-logic operations with magnetic memory elements in a single platform,” notes Catalan Institution for Research and Advanced Studies (ICREA) Research Professor Stephan Roche, who has been leading the Graphene Flagships Spintronics Work Package since its inception.

Researchers manipulate the width of GNRs to create quantum chains that could be used for nano-transistors and quantum computing

Researchers at EMPA (Swiss Federal Laboratories for Materials Science and Technology), along with colleagues from the Max Planck Institute for Polymer Research in Mainz and other partners, have succeeded in precisely controlling the properties of graphene nano-ribbons (GNRs) by specifically varying their shape. This can be used to generate specific local quantum states, and could in the future be used for precise nano-transistors or possibly even quantum computing.

Researchers manipulate the width of GNRs to create quantum chains that could be used for nano-transistors and quantum computing image

The team has shown that if the width of a narrow graphene nano-ribbon changes, in this case from seven to nine atoms, a special zone is created at the transition: because the electronic properties of the two areas differ in a special, topological way, a "protected" and thus very robust new quantum state is created in the transition zone. This local electronic quantum state can be used as a basic component to produce tailor-made semiconductors, metals or insulators - and perhaps even as a component in quantum computers.

Graphene nanoribbons on a gold surface may open the door to improved electronics and future spintronics applications

A research team at the U.S. Department of Energy’s (DOE) Argonne National Laboratory has placed armchair-edge graphene nanoribbons (AGNRs) on a gold surface. Since AGNRs become semiconductors at certain widths, this structure may offer advantages in speed, heat dissipation and power consumption in electronic devices and create new research paths in spintronics.

The goal was to use AGNRs to block magnetic interactions on a metal. The team focused on how the AGNRs affect these interactions in a molecule tightly adhered to gold using the phenomenon of Kondo resonance — a well-defined, temperature-dependent effect between a single magnetic atom or molecule and a metal’s free electrons. For this purpose, the team relied on a low-temperature scanning tunneling microscopy tool at Argonne’s Center for Nanoscale Materials.