Groningen team creates graphene-based 2D spin transistor

Physicists from the University of Groningen constructed a two-dimensional spin transistor, in which spin currents were generated by an electric current through graphene. A monolayer of a transition metal dichalcogenide (TMD) was placed on top of the graphene to induce charge-to-spin conversion in the graphene.

Scientists create fully electronic 2-dimensional spin transistors image

Spintronics is an attractive alternative way of creating low-power electronic devices. It is not based on a charge current but rather on a current of electron spins. Spin is a quantum mechanical property of an electron, a magnetic moment that could be used to transfer or store information.

The Graphene Flagship is looking for new industrial partners for its core 3 project

The Graphene Flagship has announced a call out for new industrial partners to bring specific industrial and technology transfer competences or capabilities that complement the present GF consortium in the next core project (Core 3).

The Graphene Flagship is looking for companies with specific expertise - for example MRAM tools developers to leverage solutions for graphene-spintronic stacks, developers of graphene related materials based laser systems and instrumentations for coherent Raman imaging, makers of graphene-based fibers, yarns and textiles, automotive companies with expertise in fuel-cells, industrial graphene-based supercapacitors makers and more.

The Graphene Flagship announces its 2019-2030 graphene application roadmap

The EU Graphene Flagship has published its graphene application roadmap, showing when the flagship expects different graphene applications to mature and enter the market.

Graphene Flagship roadmap 2019-2030 photoAs can be seen in the roadmap above (click here for a larger image), the first applications that are being commercialized now are applications such as composite functional coatings, graphene batteries, low-cost printable electronics (based on graphene inks), photodetectors and biosensors.

Graphene enables low-dimensional spintronics at room temperature

Graphene Flagship researchers produced graphene-based spintronics devices that utilize both electron charge and spin at room temperature. Demonstrating the spin’s feasibility for bridging distances of up to several micrometres, these results may open the door to new possibilities for integrating information-processing and storage in a single chip.

The Graphene Flagship program recognizes the potential of spintronics devices made from graphene-related materials. Researchers from different universities successfully showed that it is possible to manipulate graphene’s spin properties in a controlled manner at room temperature. These results inspire new directions in the development of spin-logic devices and quantum computing. “With miniaturization a major driving force behind the electronics industry, graphene opens new possibilities for compacting spin-logic operations with magnetic memory elements in a single platform,” notes Catalan Institution for Research and Advanced Studies (ICREA) Research Professor Stephan Roche, who has been leading the Graphene Flagships Spintronics Work Package since its inception.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!