Researchers stabilize the edges of graphene nanoribbons and measure their magnetic properties

Researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have developed a method to stabilize the edges of graphene nanoribbons and directly measure their unique magnetic properties.

The team, co-led by Felix Fischer and Steven Louie from Berkeley Lab’s Materials Sciences Division, found that by substituting some of the carbon atoms along the ribbon’s zigzag edges with nitrogen atoms, they could discretely tune the local electronic structure without disrupting the magnetic properties. This subtle structural change further enabled the development of a scanning probe microscopy technique for measuring the material’s local magnetism at the atomic scale.

DFG to invest millions in funding in new graphene research group

The German Research Foundation (Deutsche Forschungsgemeinschaft – DFG) has announced its plan to establish a new research group: "Proximity-induced correlation effects in low-dimensional structures", under the leadership of Chemnitz University of Technology. The research group will be funded with approximately 3.2 million euros plus a 22 percent program allowance for indirect costs during the first four-year funding period.

The research work of the interdisciplinary DFG research group will focus on atomically thin carbon films such as graphene. "These two-dimensional materials and their heterostructures are currently being intensively researched worldwide, as they exhibit unusual and novel electronic properties. The goal of the scientists in our DFG research group is to investigate the correlation effects occurring in a prototypical 2D heterosystem and to manipulate them in a targeted manner", said Prof. Dr. Christoph Tegenkamp from Chemnitz U, spokesperson for the new group. This involves specially fabricated epitaxial graphene layers on the semiconductor material silicon carbide. "These research should provide further foundations for novel quantum materials with tailored properties and their application, for example in spintronics or electronics".

'Magic angle' trilayer graphene found to act as rare "spin-triplet" superconductor

Researchers at MIT and Harvard University have previously found that graphene can have exotic properties when situated at a 'magic angle'. Now, a new study by some of the members of the same team shows that this material could also be a "spin-triplet" superconductor – one that isn't affected by high magnetic fields – which potentially makes it even more useful.

"The value of this experiment is what it teaches us about fundamental superconductivity, about how materials can behave, so that with those lessons learned, we can try to design principles for other materials which would be easier to manufacture, that could perhaps give you better superconductivity," says physicist Pablo Jarillo-Herrero, from the Massachusetts Institute of Technology (MIT).

“Bite” defects revealed in bottom-up graphene nanoribbons

Two recent studies by a collaborative team of scientists from two NCCR MARVEL labs have identified a new type of defect as the most common source of disorder in on-surface synthesized graphene nanoribbons (GNRs).

Combining scanning probe microscopy with first-principles calculations allowed the researchers to identify the atomic structure of these so-called "bite" defects and to investigate their effect on quantum electronic transport in two different types of graphene nanoribbon. They also established guidelines for minimizing the detrimental impact of these defects on electronic transport and proposed defective zigzag-edged nanoribbons as suitable platforms for certain applications in spintronics.

Researchers design a graphene-based tunable beam splitter

Researchers from France, South Korea, and Japan have created a graphene-based “beam splitter” for electronic currents. The tunable device’s operation is directly comparable to that of an optical interferometer. The team believes that the technology could enable electron interferometry to be used in nanotechnology and quantum computing.
Schematic representation of the p − n junction imageQuantum Hall valley splitter - schematic representation of the p − n junction. Image from article

An optical interferometer splits a beam of light in two, sending each beam along a different path before recombining the beams at a detector. The measured interference of the beams at the detector can be used to detect tiny differences in the lengths of the two paths. Recently, physicists have become interested in doing a similar thing with currents of electrons in solid-state devices, taking advantage of the fact that electrons behave similarly to waves in the quantum world.