Graphene-enhanced smart textiles developed for heat adaptive clothing

New research at the University of Manchester's National Graphene Institute focuses on graphene-enhanced smart adaptive clothing which can lower the body temperature of the wearer in hot climates.

Graphene smart adaptive clothing can lower the body temperature of the wearer in hot climates image

The team of scientists has created a prototype garment to demonstrate dynamic thermal radiation control within a piece of clothing by utilizing the remarkable thermal properties and flexibility of graphene. The development also opens the door to new applications such as, interactive infrared displays and covert infrared communication on textiles.

Rolls-Royce to work with Verasrien and Manchester's GEIC on graphene-enhanced aerospace applications

It was recently reported that Rolls-Royce is to work with the University of Manchester’s Graphene Engineering Innovation Centre (GEIC) and its partner Versarien on the use of graphene and other 2D materials used in wiring for next-generation aerospace engine systems.

The initial program of work will use the state-of-the-art chemical vapor deposition (CVD) equipment located within the GEIC.

Graphene production systems maker planarTECH launches an equity crowdfunding campaign to support its future growth potential

UK-based planarTECH is launching an equity crowdfunding campaign at on Seedrs, as part of Graphene-Info's Graphene Crowdfunding Arena. planarTECH aims to expand its current business and also initiate new graphene endeavors.

planarTECH planarGROW 8S photo

planarTECH, founded in 2014, supplies CVD equipment for the production of high quality graphene sheets, as well as other 2D materials. The company was focused on research institutes, and already sold over 65 systems with a customer list that includes Manchester University, the University of Cambridge, Stanford University and the National University of Singapore.

Graphene enables researchers to visualize the flow of electrons

Researchers from Israel's Weizmann Institute and the UK's Manchester University have succeeded in imaging electrons' hydrodynamic flow pattern for the first time using a novel scanning probe technique. They have proven the longstanding scientific theory that electrons can behave like a viscous liquid as they travel through a conducting material, producing a spatial pattern that resembles water flowing through a pipe.

The results of this study could help developers of future electronic devices, especially those based on 2D materials like graphene in which electron hydrodynamics is important.

Colloids Group funds research project for graphene nanocomposites GEIC

The Colloids Group is funding a joint collaborative Ph.D. research project with the Graphene Engineering Innovation Centre (GEIC) at The University of Manchester. The project team will investigate the applicability of nanocomposites based on graphene and other two-dimensional (2D) materials to a broad range of thermoplastic materials, including polyolefins, polyamides and polyesters, and to understand how mechanical, thermal, electrical, rheological and gas-barrier properties (among others) are affected by the production process and by the materials used.

Phase 1 of this collaborative project was successfully completed within 12 months. Phase 2, which is about to start, is expected to be a three to four year research project. For this next phase, Colloids is funding and supporting a full time Ph.D. researcher who will be based at the University of Manchester with the Advanced Nanomaterials Group led by Dr. Mark A. Bissett and Professor Ian A. Kinloch.