University of Manchester

Graphene experiment proves patterns in chaos in quantum realm

Researchers from the University of California, Harvard University, University of Manchester, UC Santa Cruz and the National Institute for Materials Science in Tsukuba, Japan have conducted an experiment that confirms a 40 year old theory that electrons confined in quantum space would move along common paths rather than producing a chaotic array of trajectories.

Electrons exhibit both particle and wave-like properties and behave in ways that are often counterintuitive, and under certain conditions, their waves can interfere with each other in a way that concentrates their movement into certain patterns. Physicists call these common paths “unique closed orbits.”

Read the full story Posted: Dec 05,2024

Graphene oxide and chitosan sponge for ultrafast and precise recovery of gold from electronic waste

Researchers at the National University of Singapore, working with colleagues from Manchester University and Guangdong University of Technology, have developed a sponge-like material made of graphene oxide and chitosan, that can be used to extract gold from electronic waste. In their recent study, the research team describes how they made their sponge and how well it worked during testing.

Previous research has shown that removing gold, silver and other metals from electronic equipment that is no longer useful, as a way to recycle such materials, is a difficult task that often results in low yields and the generation of a variety of toxic pollutants. In this new work, the team has found a way to remove the gold in a way that is cheaper and cleaner than conventional methods and much more efficient as well.

Read the full story Posted: Oct 27,2024

Manchester University team discovers energy storage mechanism in bi-layer graphene anode

A team of scientists from the University of Manchester has gained new understanding of lithium-ion storage within the thinnest possible battery anode - composed of just two layers of carbon atoms. Their work shows an unexpected ‘in-plane staging’ process during lithium intercalation in bilayer graphene, which could pave the way for advancements in energy storage technologies.

Lithium-ion batteries, which power everything from smartphones and laptops to electric vehicles, store energy through a process known as ion intercalation. This involves lithium ions slipping between layers of graphite - a material traditionally used in battery anodes, when a battery is charged. The more lithium ions that can be inserted and later extracted, the more energy the battery can store and release. While this process is well-known, the microscopic details have remained unclear. The Manchester team’s discovery sheds new light on these processes by focusing on bilayer graphene, the smallest possible battery anode material.

Read the full story Posted: Sep 06,2024

Researchers demonstrate control of proton transport and hydrogenation in double-gated graphene

Researchers from the University of Manchester, University of Cambridge, Khalifa University and Universidade Federal do Ceará have developed a new device using graphene to transform next-generation technologies in hydrogen fuel cells, computing, and catalysis.

Image credit: Khalifa University 

The team's research shows that the properties of a graphene sheet can be fine-tuned with the help of electric fields to independently host proton and electron currents, thus setting the stage for a device that serves both computer memory and logic functions.

Read the full story Posted: Jul 23,2024

Researchers' new approach could boost graphene’s energy and computing prospects

Researchers at the National Graphene Institute and their collaborators have gained understanding into how electric field effects can selectively accelerate coupled electrochemical processes in graphene. Electrochemical processes are essential in renewable energy technologies like batteries, fuel cells, and electrolysers. However, their efficiency is often hindered by slow reactions and unwanted side effects. Traditional approaches have focused on new materials, yet significant challenges remain.

The Manchester team, led by Dr. Marcelo Lozada-Hidalgo, has taken a novel approach. They have successfully decoupled the inseparable link between charge and electric field within graphene electrodes, enabling unprecedented control over electrochemical processes in this material. The breakthrough challenges previous assumptions and opens new avenues for energy technologies.

Read the full story Posted: Jun 21,2024

Researchers develop new approach for controlling thermal emission

Researchers from the University of Manchester, The Pennsylvania State University, Koç University and Vienna University of Technology (TU Wien) have tackled the challenge of control of thermal radiation, demonstrating a new topology-based approach.

The team explained that conventional approaches to tailoring thermal emission using metamaterials are hampered both by the limited spatial resolution of the required subwavelength material structures and by the materials’ strong absorption in the infrared. In their recent work, the scientists developed an approach based on the concept of topology: by changing a single parameter of a multilayer coating, they were able to control the reflection topology of a surface, with the critical point of zero reflection being topologically protected. 

Read the full story Posted: Jun 10,2024

Researchers achieve robust superconductivity in high magnetic fields using unique 1D system

An international team of researchers, led by the University of Manchester, has achieved robust superconductivity in high magnetic fields using a newly created one-dimensional system. Achieving superconductivity in the quantum Hall regime has been a longstanding challenge, which this recent work aimed to address. 

The team followed the conventional route where counterpropagating edge states were brought into close proximity to each other. However, this approach was found to be limited. “Our initial experiments were primarily motivated by the strong persistent interest in proximity superconductivity induced along quantum Hall edge states,” explained University of Mnchester's Dr. Barrier, the paper’s lead author. “This possibility has led to numerous theoretical predictions regarding the emergence of new particles known as non-abelian anyons.”

Read the full story Posted: Apr 26,2024

United Utilities and University of Manchester test graphene-enhanced concrete

It was reported that an ambitious project between United Utilities and the University of Manchester to put green concrete to the test in the water sector has taken an important step forward. The University of Manchester’s Graphene Green Concrete is one of the partners taking part in the water company’s latest Innovation Lab – and now the first test pour of the material has taken place.

Graphene Green Concrete was developed by a team at the university as a sustainable alternative to standard concrete. Instead of using virgin aggregate material, the concrete uses 100% recycled aggregate combined with tiny amounts of graphene to reduce its overall carbon impact.

Read the full story Posted: Mar 27,2024

First-in-human testing of graphene's safety shows encouraging results

Researchers at the University of Manchester, University of Edinburgh, ICN2, RIVM and the University of the Highlands and Islands have tested the safety and health implications of graphene, revealing that it has the potential to be used without risk to human health.

The study has shown that the use of graphene without harm to the human body is possible, through the carefully controlled inhalation of graphene, shown to have no short-term adverse effects on cardiovascular function.

Read the full story Posted: Feb 16,2024

Graphene Innovations Manchester and Space Engine Systems to collaborate on graphene-enhanced hypersonic applications for space travel

UK-based Graphene Innovations Manchester (GIM) and Space Engine Systems (SES) from Canada have signed a Memorandum of Understanding (MoU) to collaborate in various areas of SES’s Hello series of Aerospace and Space vehicles, focusing on using graphene for hypersonic applications.

GIM is working on the development and commercialization of advanced graphene-based solutions for composites, particularly in Graphene Space Habitat,
and also Type V hydrogen storage tanks. GIM is the largest Tier 1 partner in the Graphene Engineering Innovation Centre (GEIC) at the University of Manchester.

Read the full story Posted: Feb 15,2024