You are here

Nanjing team develops graphene oxide-based solar desalination system

Dec 05, 2016

Researchers from the Chinese Nanjing University have reportedly developed a graphene oxide-based solar desalination system that does not require a solar concentrator or thermal insulation. Featuring a confined 2D water channel, the system is able to achieve high levels of solar absorption and effective desalination.

The research team stated that it used a graphene oxide film as the basis for a device. The graphene oxide film is said to be foldable and produced using a scalable process. With this at the core of the system, the researchers believe that the development represents "a concrete step for solar desalination to emerge as a complementary portable and personalized clean water solution".

Graphene-perovskite solar cells exceed 18% efficiency

Oct 05, 2016

A team of researchers from Italy has created hybrid perovskite-graphene solar cells that show good stability upon exposure to sunlight, while still maintaining an impressive efficiency of over 18% - the highest reported efficiency of graphene perovskite hybrid solar cells to date.

Despite tremendous progress in Perovskite PV performance, the stability of these devices is still questionable. In particular, air and humidity degrade cell performance, as do continued exposure to sunlight and heat, setting back the advantages over other types of solar cells. Graphene and graphene-related materials (GRMs) have properties that make them shine in applications like protective layers, andso arise as natural candidates to protect PSCs from atmospheric degradation.<--break->The Italian team reviewed the protective properties of graphene and GRMs, including graphene oxide (GO) and reduced graphene oxide (rGO), have on PSCs. Moreover, the report describes a new type of hybrid perovskite solar cell containing both graphene flakes and a GO layer. The new cell exhibits a PCE of up to 18.2%.

2D perovskites may rival graphene in PV applications

Aug 10, 2016

Department of Energy (DoE) funded researchers investigated the electronic properties of 2D hybrid organic-inorganic perovskite sheets, as an alternative to graphene and other materials. The researchers reported that such perovskites could rival graphene in PV applications, since the 2D crystals exhibited efficient photoluminescence, were easier to grow than graphene and it's possible to dope it to make the various varieties of ionic semiconductors needed to beat other 2D materials with tunable electronic/photonic properties.

Perovskite crystal image

Scientists created these new forms of hybrid organic-inorganic perovskites in atomically thin 2D sheets and first showed how they hold promise as semiconductor materials for photovoltaic applications. Next they showed how they could serve as an alternative to other 2D semiconductors that are widely studied as potential successors to silicon in future electronic devices.

Graphene quantum dots and TiO2 exhibit fascinating light harvesting capabilities

Jul 20, 2016

Researchers at Australia's Griffith University have discovered a fascinating mechanism, that may allow the design of a new class of composite materials for light harvesting and optoelectronics. The team has found a quantum-confined bandgap narrowing mechanism, where UV absorption of the graphene quantum dots and TiO2 nanoparticles can easily be extended into the visible light range.

According to the scientists, real life application of this would be high efficiency paintable solar cells and water purification using sun light. In addition, the team states that "this mechanism can be extremely significant for light harvesting. What's more important is we've come up with an easy way to achieve that, to make a UV absorbing material to become a visible light absorber by narrowing the bandgap."

Talga outlines plans for graphene products

Jul 19, 2016

Talga Resources logoTalga Resources has outlined its updated commercialization strategy. It is seeking to unlock early commercialization opportunities based on the production of four specific graphene products for use within targeted industrial markets. The development of these product lines is in addition to the supply of raw graphene and graphite materials which has been the Company’s focus to date.

The new strategy is reportedly a progression made possible by the growth of Talga’s pilot plant facility in Germany. Recent equipment scale up and a significant boost to the Company’s technical team enables this new ‘applied products’ capability and expedited path to associated sources of revenue.