Researchers give graphite same properties as graphene

Researchers from the University of Washington and Japan's National Institute for Materials Science have performed transport measurements of dual-gated devices constructed by slightly rotating a monolayer graphene sheet atop a thin bulk graphite crystal. They surprisingly found that it is possible to imbue graphite with physical properties similar to graphene. 

Not only was this result unexpected, the team also believes its approach could be used to test whether similar types of bulk materials can also take on 2D-like properties.  


“Stacking single layer on single layer — or two layers on two layers — has been the focus for unlocking new physics in 2D materials for several years now. In these experimental approaches, that’s where many interesting properties emerge,” said senior author Matthew Yankowitz, a UW assistant professor of physics and of materials science and engineering. “But what happens if you keep adding layers? Eventually it has to stop, right? That’s what intuition suggests. But in this case, intuition is wrong. It’s possible to mix 2D properties into 3D materials.”

The team adapted an approach commonly used to probe and manipulate the properties of 2D materials: stacking 2D sheets together at a small twist angle. Yankowitz and his colleagues placed a single layer of graphene on top of a thin, bulk graphite crystal, and then introduced a twist angle of around 1 degree between graphite and graphene. They detected novel and unexpected electrical properties not just at the twisted interface, but deep in the bulk graphite as well.

The twist angle is critical to generating these properties, said Yankowitz. A twist angle between 2D sheets, like two sheets of graphene, creates what’s called a moiré pattern, which alters the flow of charged particles like electrons and induces exotic properties in the material.

In the UW-led experiments with graphite and graphene, the twist angle also induced a moiré pattern, with surprising results. Even though only a single sheet of graphene atop the bulk crystal was twisted, researchers found that the electrical properties of the whole material differed markedly from typical graphite. And when they turned on a magnetic field, electrons deep in the graphite crystal adopted unusual properties similar to those of electrons at the twisted interface. Essentially, the single twisted graphene-graphite interface became inextricably mixed with the rest of the bulk graphite.

“Though we were generating the moiré pattern only at the surface of the graphite, the resulting properties were bleeding across the whole crystal,” said co-lead author Dacen Waters, a UW postdoctoral researcher in physics.

For 2D sheets, moiré patterns generate properties that could be useful for quantum computing and other applications. Inducing similar phenomena in 3D materials unlocks new approaches for studying unusual and exotic states of matter and how to bring them out of the laboratory and into our everyday lives.

“The entire crystal takes on this 2D state,” said co-lead author Ellis Thompson, a UW doctoral student in physics. “This is a fundamentally new way to affect electron behavior in a bulk material.”

The team believes the approach of generating a twist angle between graphene and a bulk graphite crystal could be used to create 2D-3D hybrids of its sister materials, including tungsten ditelluride and zirconium pentatelluride. This could unlock a new approach to re-engineering the properties of conventional bulk materials using a single 2D interface.

“This method could become a really rich playground for studying exciting new physical phenomena in materials with mixed 2D and 3D properties,” said Yankowitz.

Posted: Jul 28,2023 by Roni Peleg