Graphene devices to be tested on latest SpaceX mission

Earlier this month, SpaceX launched its Fourth Transporter mission. As a result, in about two months, experiments designed by university students from the Netherlands and Chile, and using graphene test devices manufactured by Applied Nanolayers, will probe the impact of real-space travel and direct space exposure on conductive graphene devices for the first time.

Applied Nanolayers and Technical University of Delft module specialists worked together on the specification of graphene materials and the physical devices required for space flight qualification. The resulting devices will test how graphene components withstand the vibration, radiation and temperature conditions of space, and the data generated will be used to give device developers verified graphene performance data to aid device design. Graphene’s ability to improve the sensitivity and accuracy of sensors used for navigation and astronomical observation is crucially important for future space travel.

Haydale secures Innovate UK grant to develop smart composite tooling

Haydale has announced that it has been awarded funding of £186,403 by Innovate UK, the UK's innovation agency, to develop smart composite tooling for the aerospace industry using functionalized nanomaterials.

The ESENSE project (Out-of-autoclave self-heated tooling enabling temperature homogeneity and embedded graphene sensors) aims to enhance out-of-autoclave (OOA) manufacturing processes with monitoring and through-life sensing capabilities using Haydale's patented HDPlas functionalization process to develop high temperature inks and pressure sensors. The project is due to start in April 2022 and is expected to run for 24 months.

Researchers use 'aerographene' to create controllable electrical explosions

An international research team, led by Germany's Kiel University (CAU) and including scientists from the University of Southern Denmark, Technische Universität Dresden, University of Trento, Sixonia Tech and Queen Mary University of London, has used aero-graphene to develop a new method for the generation of controllable electrical explosions. "Aerographene" consists of a finely-structured tubular network based on graphene with numerous cavities. This makes it extremely stable, conductive and almost as lightweight as air.

The research team has now taken a major step toward practical applications. They have succeeded in repeatedly heating and cooling aerographene and the air contained inside it to very high temperatures in an extremely short period of time. This enables extremely powerful pumps, compressed air applications or sterilizing air filters in miniature.

Graphene oxide could improve aircraft fuel

A team of researchers at UBC Okanagan (UBCO), studying the burning rate of nanomaterials in liquid fuels, believe they have created a recipe for clean-burning, power-boosting aircraft fuel.

A droplet of fuel mixed with nanomaterials is ignited during an experiment in UBCO’s lab imageA droplet of fuel mixed with nanomaterials is ignited during an experiment in UBCO’s Combustion for Propulsion and Power Lab. Image credit: UBCO

The team is investigating the combustion characteristics of microscopic graphene oxide inside fuel. Their experiment measures the ignition delay, burn rate and speed by which the graphene particles and fuel separate into smaller particles. “Working with our industry partner, ZEN Graphene Solutions, we are assessing how the burn rate of this mixture can potentially improve its combustion properties,” explains lead author and doctoral student Sepehr Mosadegh.

University of Manchester teams up with SOM to develop graphene-enhanced space habitat

Specialists at The University of Manchester have teamed up with global architect firm Skidmore, Owings & Merrill (SOM) to research the design and manufacturing of space habitats for the space industry.

U of M and SOM design graphene-enhanced space habitat imageThe view from inside the viewing deck aboard the Graphene Space Habitat. Credit: SOM and U of Manchester

The international collaboration has Dr. Vivek Koncherry and his team (supported by the Manchester-based Graphene Engineering Innovation Centre) creating a scaled prototype of a graphene-enhanced space habitat with pressurized vessels designed to function in a space environment.