New graphene nanoribbons could enable smaller electronic devices

A new collaborative study has reported a 17-carbon wide graphene nanoribbon and found that it has the tiniest bandgap observed so far among familiar graphene nanoribbons prepared through a bottom-up approach.

17-carbon wide graphene nanoribbons to pave the way for new GNR-based electronic devices image(a) Bottom-up synthesis scheme of 17-AGNR on Au(111), (b) high-resolution STM image, and (c) nc-AFM image of 17-AGNR. Image Credit: Junichi Yamaguchi, Yasunobu Sugimoto, Shintaro Sato, Hiroko Yamada.

The study is part of a project of CREST, JST Japan including Nara Institute of Science and Technology (NAIST), the University of Tokyo, Fujitsu Laboratories and Fujitsu.

Researchers design a novel method for construction of van der Waals heterostructures using a dual-function polymeric film

A team of researchers has found a novel method for the construction of high-quality van der Waals (vdW) heterostructures, that are vital for many scientific studies and technological applications of layered materials. The work is a collaboration between the laboratory of Davood Shahrjerdi, a professor of Electrical and Computer Engineering at the NYU Tandon School of Engineering and a faculty member of NYU WIRELESS; a group led by Javad Shabani at the Center for Quantum Phenomena, New York University; and Kenji Watanabe and Takashi Taniguchi of National Institute for Materials Science, Japan.

Fabrication of vdW heterostructures image

A crucial step for building vdW graphene heterostructures is the production of large monolayer graphene flakes on a substrate, a process called mechanical exfoliation. The process then involves transferring the graphene flakes onto a target location for the assembly of the vdW heterostructure. An optimal substrate would therefore make it possible to efficiently and consistently exfoliate large flakes of monolayer graphene and subsequently release them on-demand for constructing a vdW heterostructure.

Stretchable Li-ion battery enhanced with graphene and CNTs to benefit wearable electronics

Scientists in the Korea Institute of Science and Technology (KIST) have worked with graphene and carbon nanotubes to develop a working lithium-ion battery that can be stretched by up to 50% without damage to any of the components. According to the scientists, the battery represents a significant step in the development of wearable or body-implantable electronic devices.

KIST team develops stretchable Li-ion battery with graphene and CNTs image

Rather than trying to add inherently stretchable materials such as rubber to the battery components, the group focused on creating an “accordion-like” structure, adding stretchability to materials that are not inherently stretchable. Using graphene and carbon nanotubes, the scientists were able to construct a honeycomb-shaped composite framework, which was then compressed inwardly like an accordion to impart the stretchable properties.

New grahene-based platform to open the door to various new applications

Penn State researchers, in conjunction with Lawrence Berkeley National Lab and Oak Ridge National Lab, have developed an atomically thin materials platform developed that could enable a range of new applications in biomolecular sensing, quantum phenomena, catalysis and nonlinear optics.

2D metals open pathways to new science imageA single atomic layer of metal is capped by a layer of graphene, allowing for new layered materials with unique properties. Image: Yihuang Xiong/Penn State

“We have leveraged our understanding of a special type of graphene, dubbed epitaxial graphene, to stabilize unique forms of atomically thin metals,” said Natalie Briggs, a doctoral candidate and co-lead author on a paper in the journal Nature Materials. “Interestingly, these atomically thin metals stabilize in structures that are completely different from their bulk versions, and thus have very interesting properties compared to what is expected in bulk metals.”

New method produces graphene on surfaces for precise electronics applications

Scientists at Rice University, the University of Tennessee, Knoxville (UT Knoxville) and Oak Ridge National Laboratory (ORNL) have demonstrated the use of a very small visible beam to burn graphene into microscopic patterns.

Schematic of the method for finely creating graphene with a small laser imageScientists recorded the formation of laser-induced graphene made with a small laser mounted to a scanning electron microscope. Image credit: the Tour Group

The labs of Rice chemist James Tour, which discovered the original method to turn a common polymer into graphene in 2014, and Tennessee/ORNL materials scientist Philip Rack revealed they can now watch the conductive material form as it makes small traces of LIG in a scanning electron microscope (SEM).