IBM develops method to use graphene to deposit materials at a specific, nanoscale location

The Industrial Technology and Science group in IBM Research-Brazil, along with other academic collaboration partners, has reportedly proven for the first time that it is possible to electrify graphene so that it deposits material at any desired location at a solid surface with an almost-perfect turnout of 97%. Using graphene in this way enables the integration of nanomaterials at wafer scale and with nanometer precision.

IBM develops method to use graphene to deposit materials at a specific, nanoscale location imageArtistic rendering of electric field-assisted placement of nanoscale materials between pairs of opposing graphene electrodes structured into a large graphene layer located on top of a solid substrate

Not only has this new work shown that it is possible to deposit material at a specific, nanoscale location, it was also reported that this can be done in parallel, at multiple deposition sites, meaning it’s possible to integrate nanomaterials at mass scale. This work has been patented.

Paragraf opens new R&D facility in Cambridge

Paragraf logo imageParagraf, the UK-based graphene technology development company, has announced the opening of an R&D facility in Cambridge. This follows the May 2018 announcement regarding seed investment of £2.9 million. The new site represents a turning point for graphene-based technologies, according to Paragraf, which it hopes will drive large-scale development of mass-market, graphene-based electronic devices.

Paragraf says its proprietary production technique overcomes the quality, contamination and reproducibility barriers faced by other graphene production methods. The customized equipment at the Cambridge facility will also allow Paragraf to convert its laboratory research into novel products, including next generation sensors, solid state electronics and energy storage cells.

Graphene-enhanced pants to help the disabled with their mobility

Researchers at the University of Bristol are developing graphene-enabled ‘smart trousers’ with artificial ‘muscles’ which could help the elderly and disabled with their mobility.

The project, funded by the Engineering and Physical Sciences Research Council (EPSRC), incorporates a number of technologies including smart electronics and graphene. Some items of clothing which make use of these, including a pair of ‘power trousers’, have already been demonstrated at the British Science Festival.

Czech scientists design a new way to control the properties of molecules

Researchers from the Regional Center of Advanced Technologies and Materials (RCPTM) at Palacký University in the Czech Republic, together with the colleagues from the Institute of Physics (FZU) of the Czech Academy of Science (CAS) and the Institute of Organic Chemistry and Biochemistry (IOCB) of the CAS, have designed a new way to control the electronic and magnetic properties of molecules.

A new way to control the properties of molecules image

Traditionally, such a change can be induced by application of external stimuli, such as light, temperature, pressure, and magnetic field. The Czech scientists have instead developed a way to use weak non-covalent interactions of molecules with the surface of chemically modified graphene.

The Graphene Flagship moves towards new stage

The Graphene Flagship was launched in 2013 with the mission to take graphene and related layered materials from academic laboratories to the market, revolutionize multiple industries and create economic growth and new jobs in Europe. Five years later, the Flagship consortium has reported that it successfully completed the Core1 phase and is progressing towards more applied phases. It is reportedly on its way to achieving its objective of developing the high potential of graphene and related 2D materials to the point of having a dramatic impact on multiple industries.

The Reviewing Panel thoroughly examined the results obtained in this Core1 phase and concluded that for many topics, there has been a clear transformation of the activities, moving from individual research projects to genuine collaboration towards larger goals – exactly what a Flagship project should aim for. Nearly all milestones and key performance indicators have been met, often exceeding expectations. There are numerous examples of significant scientific and/or technological achievements, with clear progress beyond the state of the art. The Work package on Photonics and Optoelectronics led by ICREA Prof. at ICFO Frank Koppens was recognized as one of the closest to being brought into industrial exploitation due to its significant potential for both scientific breakthrough and innovation.