Understanding graphene/GaN and other 2D/3D interfaces by UV illumination could be crucial for next-gen electronics

Researchers from the Nagoya Institute of Technology (NITech) in Japan have developed a method to examine the connections between two-dimensional layers of atoms and semiconductors, which could prove useful in the future for ensuring the performance of next-gen electronics.

The fabrication process of vertical Schottky junction with monolayer graphene on free-standing GaN imageThe fabrication process of a monolayer graphene on free-standing GaN interface

The team applied a layer of graphene to gallium nitride, a commonly used semiconductor. The graphene is made of a single layer of atoms, while the gallium nitride is a three-dimensional structure. Together, graphene and gallium nitride are known as a heterojunction device, with significant sensitivity to the interface properties of metal and semiconductors.

Laser technique that opens a bandgap in graphene could allow for next-gen graphene electronics

Researchers from Purdue University, the University of Michigan and the Huazhong University of Science and Technology have used a technique called "laser shock imprinting" to permanently stress graphene into having a band gap, which could mean it would be posiible to use it in various electronic components.

The researchers used a laser to create shock wave impulses that penetrated an underlying sheet of graphene. The laser shock stretches the graphene onto a permanent, trench-like mold. This caused the widening of band gap in graphene to a record 2.1 electronvolts. Previously, scientists achieved 0.5 electronvolts, barely reaching the benchmark to make graphene a semiconductor like silicon.

The Graphene Flagship announces its 2019-2030 graphene application roadmap

The EU Graphene Flagship has published its graphene application roadmap, showing when the flagship expects different graphene applications to mature and enter the market.

Graphene Flagship roadmap 2019-2030 photoAs can be seen in the roadmap above (click here for a larger image), the first applications that are being commercialized now are applications such as composite functional coatings, graphene batteries, low-cost printable electronics (based on graphene inks), photodetectors and biosensors.

Delaware team creates graphene-silicon devices for photonics applications

Researchers at the University of Delaware have invented a technology that is meant to improve the communication between photonics devices. This new innovation could benefit smartphones, laptops, and various other consumer electronics.

silicon-graphene devices capable of transmitting radio-frequency waves at less than a picosecond at a sub-terahertz bandwidth have been successfully created. Silicon has long been a popular material for use in semiconductors found in many electronic devices. Unfortunately, there is a limit to what silicon can do in a semiconductor, due to its carrier mobility. This means that the speed a charge moves through the material, and its indirect bandgap, can dramatically limit the material’s ability to absorb and release light. But scientists believe they’ve found a solution to this problem, in the form of graphene.

International team explores graphene-substrate interactions related to surface charges

Due to graphene's 2D geometry, most of the device applications require graphene to be partially or fully supported by a substrate, which is typically silicon dioxide (SiO2). An important example of a typical graphene structure on SiO2 is the graphene field effect transistor – GFET, a sheet of graphene connected to metal terminals on the planar substrate. The current common understanding is that graphene interacts with SiO2 through weak, long-range van der Waals forces, even though experimental evidence suggests a surprisingly strong interaction between graphene and SiO2 that affects all properties of the device.

International team explores graphene-substrate interactions related to surface charges image

Now, a multinational research team from the University of Trento, Italian Space Agency and Fondazione Bruno Kessler in Italy, Graphenea in Spain, Institute of Chemical Engineering Sciences and University of Patras in Greece, and Queen Mary University of London in the UK has shown that surface charges on the oxide are a main factor of strong interaction between graphene and SiO2, paving the way for designing 2D material interaction with a substrate through manipulation of surface charges. Such control of graphene-substrate interactions would facilitate the development of new graphene-based microelectronic devices.