Membranes

The Garland Company launches graphene-enhanced construction materials

The Garland Company, Inc., a Garland Industries company manufacturing and distributing high-performance solutions for the commercial building envelope based in Cleveland, Ohio, has announced the newest addition to its StressPly family of modified bitumen roofing membranes: StressPlyⓇ Max. This patent pending membrane is formulated for maximum strength, superior fire resistance, and exceptional weathering.

The StressPly Max membrane features a dual polyester and fiberglass reinforcement, delivering a high-tensile value further enhanced by a graphene modified bitumen. The incorporation of graphene into the asphaltic compound provides superior strength, with an internal reinforcement exceeding one thousand pounds. 

Read the full story Posted: Mar 16,2025

Dragon Elements aims to enter the XR and wearable electronics markets via new graphene-based tech

SCALE Nanotech, an advanced R&D company based in Estonia, has announced the launch of its spinout Dragon Elements in Spain, aiming to enter into the XR and wearable electronics sector. Dragon Elements is set to commercialize LATIDO® capsules, a graphene-based technology designed to "redefine human interaction with hardware by eliminating the need for traditional audio and video components", as per the Company.

LATIDO® aims to mark a "radical shift in audiovisual hardware". Unlike conventional technology that requires separate components for sound and vision, LATIDO® harnesses millions of graphene membranes to seamlessly control both light and sound within a single monolithic device, removing the need for separate screens or speakers.

Read the full story Posted: Feb 12,2025

Bilayer nanographene system uses "defect" to allow ions to pass through

Würzburg University researchers have created a defect in graphene that allows ions to pass through, which could lead to new applications in water filtration or sensor technology.

The Würzburg model system consisting of two nanographene layers that can absorb and bind chloride ions (green) through a defect in the crystal lattice. (Image: Kazutaka Shoyama / Universität Würzburg)

Defects that allow scientists to control the permeability of graphene for different substances can be very useful: ‘So-called defects can be created in the carbon lattice of graphene. These can be thought of as small holes that make the lattice permeable to gases,’ says chemistry professor Frank Würthner from Julius-Maximilians-Universität (JMU) Würzburg in Germany.

Read the full story Posted: Jan 17,2025

Clean TeQ Water awarded Commonwealth Funding for Graphene Membrane feasibility study

Clean TeQ Water has announced it has received the Commonwealth Simple Grant under the BRII: Renewables and Low Emissions Round – Feasibility program. This grant, facilitated by the Department of Industry, Science, and Resources, provides AU$80,000 (around USD$630,000) to support Clean TeQ Water’s innovative efforts to revolutionize drinking water treatment for remote communities. The grant will fund a feasibility study to assess the potential of NematiQ Graphene Membranes as a solution for drinking water treatment.

The project, “Graphene Membranes: Revolutionizing Drinking Water for Remote Communities”, will explore the efficiency, cost-effectiveness, and sustainability of the Graphene Membrane technology. It aims to improve water quality in underserved and remote areas, demonstrate the scalability and environmental benefits of Graphene Membranes, and lay the groundwork for a potential proof-of-concept phase, where up to AU$1M of funding for real-world field trials and pilot implementation is expected to be available for the projects deemed most feasible.

Read the full story Posted: Dec 24,2024

Memsift Innovations acquires graphene membrane technology from Singapore’s Ngee Ann Polytechnic

Singapore-based Memsift Innovations has entered into a technology transfer agreement with Singapore’s Ngee Ann Polytechnic on an innovative graphene membrane technology.

It was explained that the technology, featuring graphene oxide-based hollow fiber ultrafiltration and nanofiltration membranes, was developed based on over a decade of research and development. The ultrafiltration technology utilizes a graphene oxide-block copolymer composite renowned for its exceptional chemical and thermal stability, making it ideal for harsh industrial applications. Its unique surface chemistry forms a protective water layer that effectively prevents fouling. The nanofiltration technology employs a robust single-layer modified graphene oxide membrane with synthetic water channels, enhancing selectivity and permeability. This enables efficient molecular-level separation and differentiation between monovalent and multivalent ions.

Read the full story Posted: Oct 25,2024

Researchers propose chromatography-like separation mechanism with UV-rGO membranes

Researchers from Pacific Northwest National Laboratory have found that reducing graphene oxide (GO) membranes with ultraviolet (UV) light alters the oxygen functional groups on the GO surface. This modification results in a different, chromatography-like separation mechanism that is selective for charge rather than size.

Image credit: Chemical Engineering Journal

Developing efficient, selective, and scalable separations for critical materials, including lithium and magnesium, is essential to meeting the increasing demands for clean energy technologies and alleviating challenges with domestic supply chains. GO membranes have shown promise for separating ions from mixed solutions based on size.

Read the full story Posted: Jul 30,2024

Evercloak's HVAC technology gets government funding boost

Canada-based Evercloak's HVAC technology recently received a funding boost, with CAD$1.1 million (over USD$807,000) in funding from Natural Resources Canada's Energy Innovation Program (EIP).

The EIP funding supports a $1.8M project enabling Evercloak to accelerate the development of their membrane-based system, which can cut the energy required for air conditioning and dehumidification by up to 50%. According to the Company's founder and CEO, Evelyn Allen, those reductions will be crucial as global temperatures rise.

Read the full story Posted: Jul 14,2024

NematiQ GO membrane receives WaterMark Certification

Australia-based NematiQ has announced that after more than a decade of work, the NematiQ Graphene Oxide membrane has obtained WaterMark certification, solidifying its status as a safe product for water filtration. 

The Australian WaterMark Certification Scheme is a mandatory scheme for plumbing and drainage products of a certain type. Certification ensures products are fit for purpose and appropriately authorized for use in plumbing and drainage installations. The Australian Building Codes Board administers and manages the Scheme.

Read the full story Posted: Jun 29,2024

Researchers develop graphene membranes with pyridinic-nitrogen at pore edges for high-performance CO2 capture

Researchers at École Polytechnique Fédérale de Lausanne (EPFL) have developed advanced graphene membranes with pyridinic-nitrogen at pore edges, reportedly showing unprecedented performance in CO2 capture. This could mark a step towards more efficient carbon capture technologies.

Carbon capture, utilization, and storage (CCUS) is a technology that reduces carbon dioxide (CO2) emissions from hard-to-abate industrial sources such as power plants, cement factories, steel mills, and waste incinerators. But current capture methods rely on energy-intensive processes, which makes them costly and unsustainable. Researchers are working to develop membranes that can selectively capture CO2 with high efficiency, thereby reducing the energy and financial costs associated with CCUS. But even state-of-the-art membranes, such as polymer thin films, are limited in terms of CO2 permeance and selectivity, which limits their scalability. So, the challenge is to create membranes that can simultaneously offer high CO2 permeance and selectivity, crucial for effective carbon capture.

Read the full story Posted: Jun 25,2024

MEGAMORPH demonstrates its graphene-based display technology at Displayweek 2024

The EU-funded MEGAMORPH project, which started in 2022, demonstrated its graphene-based display technology at Displayweek 2024.

The idea behind the project is to use CVD graphene sheets (produced by Graphenea, a partner in the project) as the semi-transparent membranes in a Interferometric Modulator Display. These kinds of displays use mechanical micro-mirrors as pixels that modulate the ambient light without using power to generate light. IMOD displays are promising as they can offer very low power operation and high density displays.

Read the full story Posted: May 30,2024