New machine-learning method could characterize graphene materials quickly and efficiently

Monash University scientists have created an innovative method to help industry identify high quality graphene cheaper, faster and more accurately than current methods. The researchers used the data set of an optical microscope to develop a machine-learning algorithm that can characterize graphene properties and quality, without bias, within 14 minutes.

process for quantitative analysis of graphene imageFramework for quantitative analysis. Image from Advanced Science

This technology could be a game changer for hundreds of graphene or graphene oxide manufacturers globally. It will help them boost the quality and reliability of their graphene supply without need for time-consuming procedures.

Graphene takes a step towards enabling end-users to maintain their own resistance standards

Recent research by NPL, Oxford Instruments, Chalmers University and Graphensic has enabled the quantum Hall effect to be realized at both lower magnetic fields and higher temperatures, whilst still retaining part per billion accuracies.

The long-term collaboration between NPL, Chalmers University of Technology and Graphensic has resulted in a big advance in graphene samples. Epitaxial graphene (epigraphene) has been grown on silicon carbide and has better performance at higher temperatures and lower magnetic field than was previously possible. In practical terms, it has also removed the difficult process of fine-tuning the carrier density and means the ‘table-top’ system can be warmed up and cooled back down and the plateau stays where it is set with no user intervention.

ISO publishes standard on matrix of properties and measurement techniques for graphene

The International Organization for Standardization (ISO) has published standard ISO/TR 19733:2019, “Nanotechnologies — Matrix of properties and measurement techniques for graphene and related two-dimensional (2D) materials”.

ISO states that since graphene was discovered in 2004, it has become one of the most attractive materials in application research and device industry due to its supreme material properties and it is expected that applications of graphene could replace many of the current device development technology in flexible touch panel, organic light emitting diode (OLED), solar cell, supercapacitor, and electromagnetic shielding.

NUS team offers a way to fight fake Graphene

Researchers from the National University of Singapore (NUS) have set out to tackle the issue of a lack of graphene production standards, which leads to many cases of poor quality graphene from suppliers. The team developed a systematic and reliable method for establishing the quality of graphene samples from around the world. They were able to achieve this by using a wide range of analytical techniques and tested samples from many suppliers.

Upon analyzing samples from over 60 different providers from the Americas, Asia, and Europe, the NUS team discovered that the majority contained less than 10% of what can be considered graphene flakes. The bulk of the samples was graphite powder that was not exfoliated properly.

New graphene metrology service by Graphene-Info

Graphene-Info has teamed up with world renowned laboratories to offer a unique graphene metrology service that provides characterization and analysis on graphene materials.

Graphene Metrology service banner

Dozens of companies are producing various types of graphene materials, which causes much diversification and confusion. Our metrology service offers graphene producers the chance to obtain valuable test results and post-testing analysis and interpretation, that assist in proving viability and quality of production. In addition, displaying critical data to customers like the material characteristics and potential applications is key to successful marketing and sales activities.