Researchers develop washable, wearable graphene capacitors that can be woven directly into clothes

Researchers at the University of Cambridge and Jiangnan University in China have developed graphene-enhanced wearable electronic components incorporated directly into fabrics. The devices could be used for flexible circuits, healthcare monitoring, energy conversion, and other applications.

The researchers have shown how graphene and other related materials can be directly incorporated into fabrics to produce charge storage elements such as capacitors, paving the way to textile-based power supplies which are washable, flexible and comfortable to wear.

The Graphene Flagship is looking for new industrial partners for its core 3 project

The Graphene Flagship has announced a call out for new industrial partners to bring specific industrial and technology transfer competences or capabilities that complement the present GF consortium in the next core project (Core 3).

The Graphene Flagship is looking for companies with specific expertise - for example MRAM tools developers to leverage solutions for graphene-spintronic stacks, developers of graphene related materials based laser systems and instrumentations for coherent Raman imaging, makers of graphene-based fibers, yarns and textiles, automotive companies with expertise in fuel-cells, industrial graphene-based supercapacitors makers and more.

New graphene fiber combines the electrical properties of an electrode with the mechanical properties of a suture

Engineers at the University of Wollongong are collaborating with surgeons at the University of Texas at Dallas to develop materials that can provide targeted medical treatment. An emerging field called electroceuticals, where electrical stimulation is used to modify the behavior of tissues and organs affected by illness, reportedly shows promise.

Part of this research focuses on utilizing new material developments and additive manufacturing techniques to develop implantable structures that can monitor, maintain and restore function in neural tissues. However, one of the biggest barriers is finding electrode materials that can be safely implanted in the body. Materials like metal are too rigid and can damage tissues.

Directa Plus extends graphene-enhanced clothing partnership with Alfredo Grassi

Directa Plus and clothing group Alfredo Grassi have extended their exclusive relationship to develop graphene-enhanced clothing for up to a further three years. The two companies will focus on the use of graphene to enhance military outerwear as well as work-wear for organizations like the Italian police and fire services.

Directa Plus graphene-enhanced textiles development with Grassi image

Directa Plus and Grassi have already been working together for three years and reportedly produced more than 80,000 meters of fabric enhanced with graphene.

Graphene-based yarn to enable advanced wearable e-textiles

Researchers at the National Graphene Institute (NGI) have created a method to produce scalable graphene-based yarn. Such e-textiles may have great potential for sportswear, healthcare, aerospace, and fitness applications, and so are attracting research attention worldwide.

Graphene-based yarn to be used for advanced wearable e-textiles

Integrating textile-based sensors into garments in the manufacturing process is still time-consuming and complex. It is also expensive non-biodegradable, unstable, metallic conductive materials are still being used. Now, the NGI researchers have developed a process that has the potential to produce tonnes of conductive graphene-based yarn. It is possible to do this using current textile machinery without any addition to production costs. The produces graphene-based yarn is also said to be flexible, cheap, biodegradable, and washable.