Water trapped between graphene and a hydrophilic substrate may enable liquid storage and release applications

Researchers from the University of Osnabrück and the University of Duisburg-Essen have studied the hydration layers trapped between graphene and a hydrophilic substrate - when graphene is produced using exfoliation on a hydrophilic substrate. While it is possible to reduce that hydration layer (by heating it), the researchers demonstrated that it is principally impossible to completely drive this hydration layer out of the confined space.

This layer will always influence the properties of the graphene on top of it. The researchers further demonstrated that it is possible to accelerate and to control the reorganization of the water (by 2D Ostwald ripening) that is present within the first hydration layer. Using this method, one can create "nanoblisters" filled with condensed fluid water. These nanoblisters could actually be a very suitable candidates for both storage and release of chemicals in aqueous environment.

Posted: Jun 06,2014 by Ron Mertens