Graphene and lasers enable new mass spectrometric technique

Researchers at Daegu Gyeongbuk Institute of Science and Technology (DGIST) have developed a graphene-based technology that can obtain high-resolution, micrometer-sized images for mass spectrometric analysis without sample preparation. DGIST Research Fellow Jae Young Kim and Chair-professor Dae Won Moon's team succeeded in developing the precise analysis and micrometer-sized imaging of bio samples using a small and inexpensive laser.

Development of simplified new mass spectrometric technique using laser and graphene image

Due to its ability to obtain high-resolution mass spectrometric images without an experimental environment using a 'continuous wave laser,' the technology is expected to be applied widely in medicine and medical diagnosis fields.

STANDARD GRAPHENE implements water filtration system in Nepal

STANDARD GRAPHENE, a flake graphene producer headquartered in South Korea, recently announced the establishment of a water filtration plant at Lumbini, Nepal.

The water filtration plant reportedly uses a material called Super Graphite that has been developed from graphene manufacture technologies. The plant cleans the water through four filtration cycles, processing more than 1,000L of drinkable water per day. After multiple international tests, Super Graphite has reportedly been recognized to have a superior attraction to toxic materials and better filtration rates than conventional materials used for water filtration.

Graphene discovery could help develop room temperature superconductors

A research team led by Rutgers University has discovered that in the presence of a moiré pattern in graphene, electrons organize themselves into stripes, like soldiers in formation. The team's findings could help in the search for quantum materials, such as superconductors, that would work at room temperature. Such materials would dramatically reduce energy consumption by making power transmission and electronic devices more efficient.

Electrons organize in lines in magic layer graphene imageLeft: image shows a moiré pattern in "magic angle" twisted bilayer graphene. Right: Scanning tunneling charge spectroscopy, shows correlated electrons. Credit: Rutgers University

"Our findings provide an essential clue to the mystery connecting a form of graphene, called twisted bilayer graphene, to superconductors that could work at room temperature," said senior author Eva Y. Andrei, Board of Governors professor in the Department of Physics and Astronomy in the School of Arts and Sciences at Rutgers University–New Brunswick.

University of Illinois team finds that defects in graphene membranes may improve biomolecule transport

Researchers at the University of Illinois examined how tiny defects in graphene membranes, formed during fabrication, could be used to improve molecule transport. They found that the defects make a big difference in how molecules move along a membrane surface. Instead of trying to fix these flaws, the team set out to use them to help direct molecules into the membrane pores.

Nanopore membranes have generated interest in biomedical research because they help researchers investigate individual molecules - atom by atom - by pulling them through pores for physical and chemical characterization. This technology could ultimately lead to devices that can quickly sequence DNA, RNA or proteins.

Directa Plus signs contract to use graphene product to recover crude oil from European wells

Directa Plus recently announced that it has been awarded a supply and service contract from an unnamed international oil and gas company. The contract will involve treating and recovering crude oil from producing wells onshore across Europe.

Specifically, Directa Plus will be paid EUR150,000 to use its graphene-based Grafysorber technology, a product that is used to treat water contaminated by hydrocarbons, to treat several thousand cubic meters of sludges and by-products over the next six months.

Graphene research groups from Manchester University win £70,000 award

Two teams from the University of Manchester are the winners of a £70,000 prize for novel applications of graphene. Both teams are addressing key societal challenges on future energy and food security: seeking breakthroughs by using 2D materials to produce hydrogen to generate energy, and by designing polymer hydrogels to increase food production.

The Eli and Britt Harari Enterprise Award, in association with Nobel Laureate Sir Andre Geim, is awarded each year to help commercialize graphene concepts from Manchester University students, researchers and graduates. The prize is supported by former Manchester physics student, Dr. Eli Harari, founder of global flash-memory giant, SanDisk

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!