Significant Market Opportunities for Graphene in Energy Storage

This is a sponsored post by Dr. Alex Holland, IDTechEx

Graphene has been heralded as a wonder material for years, with many believing a tipping point is rapidly approaching. It undoubtedly has the potential for use in numerous applications with one of the most notable being the energy storage market. Li-ion demand for plug-in electric cars alone is forecast to be nearly 350 GWh by 2025. IDTechEx forecasts that over 30% of the graphene market will be used in energy storage applications within the next decade with multiple high-profile use cases; see IDTechEx’s reports “Li-ion Batteries 2020-2030”, and “Graphene, 2D Materials and Carbon Nanotubes 2019-2029” for more details.

Graphene market forecast (2020-2029, energy storage vs other applications, IDTechEx)
One of the most significant technological developments in energy storage regards the use of silicon dominant anodes in Li-ion batteries. The theoretical capacity of silicon is around 10x that of graphite and has therefore been the topic of intense activity in the Li-ion market - Over $500 million has been invested in silicon anode start-ups alone since 2015. However, the material is plagued by one major issue: when lithiated, it can expand in volume by 300%. This causes various issues around loss of electrical connection between electrode particles and decomposition of the electrolyte, which ultimately leads to poor cycle life.

MIT researchers use graphene and boron nitride to convert terahertz waves to usable energy

Researchers at MIT are working to develop a graphene-based device that may be able to convert ambient terahertz waves into a direct current. The MIT team explains that any device that sends out a Wi-Fi signal also emits terahertz waves —electromagnetic waves with a frequency somewhere between microwaves and infrared light. These high-frequency radiation waves, known as “T-rays,” are also produced by almost anything that registers a temperature, including our own bodies and the inanimate objects around us.

Graphene and boron nitride to help use terahertz energy image

Terahertz waves are pervasive in our daily lives, and if harnessed, their concentrated power could potentially serve as an alternate energy source. Imagine, for instance, a cellphone add-on that passively soaks up ambient T-rays and uses their energy to charge your phone. However, to date, terahertz waves are wasted energy, as there has been no practical way to capture and convert them into any usable form. This is exactly what the MIT scientists set out to do.

Huawei continues the use of graphene cooling films in its new P40 series

Huawei has launched its Huawei P40 flagship phone family, that includes three different devices: the Huawei P40, Huawei P40 Pro and, a new addition to the line-up for 2020, the Huawei P40 Pro Plus.

Huawei launches P40 image

After many rumors about this line sporting a graphene battery - which were later disproved - it appears that Huawei's new P40 phones are using a graphene film cooling technology for heat management purposes (Huawei's SuperCool system), much like the Mate 20X and P30 line that preceded the P40.

AGM reports its financial results for H1 2020

Applied Graphene Materials logoApplied Graphene Materials (AGM) announced that its revenues in the first half of its calendar year (six months ended 31 January 2020) increased to £35,000 (up from £26,000 in the first half of its last calendar year). Net loss decreased slightly to £2.3 million.

AGM says that the company is making good progress in converting customer engagement into product launches, with several applications launched in the period that are now available to retail as well as specialist industrial customers.

Versarien forms JV with Young-Graphene Technology

Versarien Graphene (Hong Kong), a wholly-owned subsidiary of Versarien, recently signed a joint venture agreement with Young-Graphene (Beijing) Technology Company(YG). YG has appointed the Secretary General of the China International Graphene Industry Union to act for it in this matter and is supported by both CIGIU and Beijing Institute of Graphene Technology. Versarien’s foreign wholly owned enterprise (Beijing Versarien Technology) will become the joint venture company with YG for the development of its activities in China.

The agreement signed with YG stipulates that a 50%-owned Chinese Joint Venture will be formed, for the development of applications for Versarien’s technologies in the region.

ZEN Graphene Solutions announces scaling up graphene production

Zenyatta logoZEN Graphene Solutions has commenced scale-up and engineering studies on processes for the production of its Albany Pure Graphene products at the Company’s research and development facility in Guelph, Ontario, Canada.

The priority is to increase graphene production in anticipation of future demand as the Company launched graphene product sales in early March 2020. ZEN will also commission the recently purchased purification autoclave to commence the production of high-purity Albany graphene precursor material.

Sussex team granted £1 million funding to develop graphene-based applications like camouflage technology, smart tires and more

A University of Sussex research team, led by Professor Alan Dalton, has received new funding of £1 million from private company Advanced Material Development, to pursue their research into graphene and other nanomaterials.

The team will conduct research into various avenues, including camouflage technology to stop soldiers from being spotted by thermal imaging cameras or night vision goggles. The team will also develop their research into anti-counterfeiting graphene inks which can be printed onto clothes and medicine containers; incorporated into smart tires which monitor for problems; used on banknotes; included on metal-free radio-frequency identification tags (RFID) tags for supermarkets to track products; and wearable technology, including monitors for babies’ heartbeats or diabetic patients’ glucose levels.

Crumpled graphene could enable fast, simple and sensitive biosensors

Researchers at the University of Illinois at Urbana-Champaign have found that crumpling graphene makes it more than ten thousand times more sensitive to DNA by creating electrical "hot spots". This discovery could assist in addressing a known issue of graphene-based biosensors - the face that they require a lot of DNA in order to function properly.

"This sensor can detect ultra-low concentrations of molecules that are markers of disease, which is important for early diagnosis," said study leader Rashid Bashir, a professor of bioengineering and the dean of the Grainger College of Engineering at Illinois. "It's very sensitive, it's low-cost, it's easy to use, and it's using graphene in a new way."

How can graphene assist in the war on Coronavirus?

As researchers and companies all over the world set out to battle the Coronavirus pandemic, many are revisiting graphene as a material with potential for helping to win this fight. The reasons for such potential could be found in graphene's known antibacterial/antiviral properties, its beneficial traits for medical sensors and devices and more.

Graphene has been shown in the past as extremely useful for creating various sensors. Earlier this month, a team led by Boston College researchers used a sheet of graphene to track the electronic signals inherent in biological structures, in order to develop a platform to selectively identify deadly strains of bacteria. In October 2019, Rice University team under chemist James Tour transformed their laser-induced graphene (LIG) into self-sterilizing filters that grab pathogens out of the air and kill them with small pulses of electricity. Commercially sold graphene-based sensors exist, like the graphene oxide (GO) sensor developed by the ICN2 Nanobioelectronics and Biosensors group that was added in 2016 to the list products offered by Biolin Scientific, a prestigious instrumentation company devoted to the production of analytical devices. The Q-Sense GO sensor enables interaction studies of GO with various analytes (measured substances) of interest and may open the door to various applications with interest for diagnostics, safety/security and environmental monitoring.

Versarien to raise £6 million from Lanstead Capital

Versarien LogoAdvanced materials company Versarien announced that it had entered into a £6 mllion subscription agreement with US-based Lanstead Capital Investors.

Versarien will sell 15 million new shares to Lanstead at 40p each, which is about 9.75% of Versarien's existing share capital. This share price is around 54% premium to Versarien's mid-market price on 20 March.