Article last updated on: Jan 25, 2019

What is a sensor?

A sensor is a device that detects events that occur in the physical environment (like light, heat, motion, moisture, pressure, and more), and responds with an output, usually an electrical, mechanical or optical signal. The household mercury thermometer is a simple example of a sensor - it detects temperature and reacts with a measurable expansion of liquid. Sensors are everywhere - they can be found in everyday applications like touch-sensitive elevator buttons and lamp dimmer surfaces that respond to touch, but there are also many kinds of sensors that go unnoticed by most - like sensors that are used in medicine, robotics, aerospace and more.

Traditional kinds of sensors include temperature, pressure (thermistors, thermocouples, and more), moisture, flow (electromagnetic, positional displacement and more), movement and proximity (capacitive, photoelectric, ultrasonic and more), though innumerable other versions exist. sensors are divided into two groups: active and passive sensors. Active sensors (such as photoconductive cells or light detection sensors) require a power supply while passive ones (radiometers, film photography) do not.

Where can sensors be found?

Sensors are used in numerous applications, and can roughly be arranged in groups by forms of use:

  • Accelerometers: Micro Electro Mechanical technology based sensors, used mainly in mobile devices, medicine for patient monitoring (like pacemakers) and vehicular systems.
  • Biosensors: electrochemical technology based sensors, used for food and water testing, medical devices, fitness tracker and wristbands (that measure, for example, blood oxygen levels and heart rate) and military uses (biological warfare and more).
  • Image sensors: CMOS (Complementary Metal-Oxide Semiconductor) based sensors, used in consumer electronics, biometrics, traffic and security surveillance and PC imaging.
  • Motion Detectors: sensors which can be Infrared, Ultrasonic or Microwave/Radar technology. They are used in video games, security detection and light activation.

What is graphene?

Graphene is a two-dimensional material made of carbon atoms, often dubbed “miracle material” for its outstanding characteristics. It is 200 times stronger than steel at one atom thick, as well as the world’s most conductive material. It is so dense that the smallest atom of Helium cannot pass through it, but is also lightweight and transparent. Since its isolation in 2004, researchers and companies alike are fervently studying graphene, which is set to revolutionize various markets and produce improved processes, better performing components and new products.

Graphene and sensors

Graphene and sensors are a natural combination, as graphene’s large surface-to-volume ratio, unique optical properties, excellent electrical conductivity, high carrier mobility and density, high thermal conductivity and many other attributes can be greatly beneficial for sensor functions. The large surface area of graphene is able to enhance the surface loading of desired biomolecules, and excellent conductivity and small band gap can be beneficial for conducting electrons between biomolecules and the electrode surface.

Graphene-based chemical sensor photo



Graphene is thought to become especially widespread in biosensors and diagnostics. The large surface area of graphene can enhance the surface loading of desired biomolecules, and excellent conductivity and small band gap can be beneficial for conducting electrons between biomolecules and the electrode surface. Biosensors can be used, among other things, for the detection of a range of analytes like glucose, glutamate, cholesterol, hemoglobin and more. Graphene also has significant potential for enabling the development of electrochemical biosensors, based on direct electron transfer between the enzyme and the electrode surface.

Graphene will enable sensors that are smaller and lighter - providing endless design possibilities. They will also be more sensitive and able to detect smaller changes in matter, work more quickly and eventually even be less expensive than traditional sensors. Some graphene-based sensor designs contain a Field Effect Transistor (FET) with a graphene channel. Upon detection of the targeted analyte’s binding, the current through the transistor changes, which sends a signal that can be analyzed to determine several variables.

Graphene-based nanoelectronic devices have also been researched for use in DNA sensors (for detecting nucleobases and nucleotides), Gas sensors (for detection of different gases), PH sensors, environmental contamination sensors, strain and pressure sensors, and more.

Commercial activities in the field of graphene sensors

In June 2015, A collaboration between Bosch, the Germany-based engineering giant, and scientists at the Max-Planck Institute for Solid State Research yielded a graphene-based magnetic sensor 100 times more sensitive than an equivalent device based on silicon.

In August 2014, the US based Graphene Frontier announced raising $1.6m to expand the development and manufacturing of their graphene functionalized GFET sensors. Their “six sensors” brand for highly sensitive chemical and biological sensors can be used to diagnose diseases with sensitivity and efficiency unparalleled by traditional sensors.

Graphene Frontiers G-FET sensorG-FET Six-Sensors

In September 2014, the German AMO developed a graphene-based photodetector in collaboration with Alcatel Lucent Bell Labs, which is said to be the world’s fastest photodetector.

In November 2013, Nokia’s Cambridge research center developed a humidity sensor based on graphene oxide which is incredibly fast, thin, transparent, flexible and has great response and recovery times. Nokia also filed for a patent in August 2012 for a graphene-based photodetector that is transparent, thin and should ultimately be cheaper than traditional photodetectors.

The latest graphene sensor news:

Graphene oxide sensor platform to detect infections within minutes

Researchers at the Fraunhofer Institute for Reliability and Microintegration IZM have joined forces with partners in industry and healthcare to develop a graphene oxide based sensor platform to detect acute infections such as sepsis or the antibodies against the coronavirus within minutes.

The Graph-POC graphene oxide-based biosensor imageThe Graph-POC graphene oxide-based biosensor. (Image: Volker Mai, Fraunhofer IZM)

The current situation with the COVID 19 pandemic underscores the importance of detecting infections quickly and accurately to prevent further spread. Today, symptoms provide the clues that help diagnose viral or bacterial infections. However, many infections have similar symptoms, so these signs can easily be misread and the disease misdiagnosed. Blood tests provide certainty, but laboratories only carry these out when prescribed by the family physician. By the time the results arrive from the lab, doctors have often prescribed an antibiotic that may well be unnecessary.

U.S researchers design new graphene-based printed sensors to monitor food safety

Researchers at Iowa State University and Northwestern University have developed graphene sensors that are printed with high-resolution aerosol jet printers on a flexible polymer film and tuned to test for histamine, an allergen and indicator of spoiled fish and meat.

Researchers are using aerosol-jet-printing technology to create graphene biosensors that can detect histamine imageImage courtesy of Jonathan Claussen, taken from Iowa State University's website

The U.S. Food and Drug Administration has set histamine guidelines of 50 parts per million in fish, while the sensors were found to detect histamine down to 3.41 parts per million. This validates that the sensors are more than sensitive enough to track food freshness and safety.

EU-funded ATTRACT consortium presents its support of several graphene projects

The MULTIMAL research project is developing a small device that can be used to rapidly identify malaria parasites using saliva samples, without the need for lab equipment. MULTIMAL is one of eight projects exploring new uses for graphene with support from ATTRACT, a €20 million EU-funded, CERN-led consortium, which has awarded 170 grants worth €100,000 each for one-year proof-of-concept technology projects.

Today’s portable malaria testing kits are “just above flipping a coin,” because they are right only 60 percent of the time, says MULTIMAL principal investigator Jérôme Bôrme. The disease, which the World Health Organisation says killed 435,000 people in 2017 (nearly all of them in Africa), is caused by five species of parasite that can be easily identified in a lab. But treating the disease in remote towns and villages is difficult because of the lack of reliable portable testing kits, explains Bôrme, MULTIMAL’s principal investigator and staff researcher at the International Iberian Nanotechnology Laboratory in Portugal, which runs MULTIMAL in collaboration with the University of Minho.

Paragraf and CERN partner to test new graphene Hall sensor

Paragraf has entered into a working partnership with the Magnetic Measurement section at CERN, the European Organization for Nuclear Research, to demonstrate how new opportunities for magnetic measurements are opened up through the unique properties of its graphene sensor, particularly its negligible planar Hall effect.

CERN trials Paragraf's graphene Hall sensor for magnetic measurements imageParagraf and CERN scientists setting up the graphene Hall sensor for performance evaluation in the reference dipole magnet of CERN’s magnetic measurement section. Credit: Paragraf/CERN

The Magnetic Measurements section at CERN is in charge of testing magnets for these accelerators using the latest-available techniques and instruments. High precision and reliable measurements are performed for many of CERN’s ongoing projects, and therefore the team is always on the lookout for new sensors and transducers for improving their measurement methods and accuracy.