What is a sensor?

A sensor is a device that detects events that occur in the physical environment (like light, heat, motion, moisture, pressure, and more), and responds with an output, usually an electrical, mechanical or optical signal. The household mercury thermometer is a simple example of a sensor - it detects temperature and reacts with a measurable expansion of liquid. Sensors are everywhere - they can be found in everyday applications like touch-sensitive elevator buttons and lamp dimmer surfaces that respond to touch, but there are also many kinds of sensors that go unnoticed by most - like sensors that are used in medicine, robotics, aerospace and more.

Traditional kinds of sensors include temperature, pressure (thermistors, thermocouples, and more), moisture, flow (electromagnetic, positional displacement and more), movement and proximity (capacitive, photoelectric, ultrasonic and more), though innumerable other versions exist. sensors are divided into two groups: active and passive sensors. Active sensors (such as photoconductive cells or light detection sensors) require a power supply while passive ones (radiometers, film photography) do not.

Where can sensors be found?

Sensors are used in numerous applications, and can roughly be arranged in groups by forms of use:

  • Accelerometers: Micro Electro Mechanical technology based sensors, used mainly in mobile devices, medicine for patient monitoring (like pacemakers) and vehicular systems.
  • Biosensors: electrochemical technology based sensors, used for food and water testing, medical devices, fitness tracker and wristbands (that measure, for example, blood oxygen levels and heart rate) and military uses (biological warfare and more).
  • Image sensors: CMOS (Complementary Metal-Oxide Semiconductor) based sensors, used in consumer electronics, biometrics, traffic and security surveillance and PC imaging.
  • Motion Detectors: sensors which can be Infrared, Ultrasonic or Microwave/Radar technology. They are used in video games, security detection and light activation.

What is graphene?

Graphene is a two-dimensional material made of carbon atoms, often dubbed “miracle material” for its outstanding characteristics. It is 200 times stronger than steel at one atom thick, as well as the world’s most conductive material. It is so dense that the smallest atom of Helium cannot pass through it, but is also lightweight and transparent. Since its isolation in 2004, researchers and companies alike are fervently studying graphene, which is set to revolutionize various markets and produce improved processes, better performing components and new products.

Graphene and sensors

Graphene and sensors are a natural combination, as graphene’s large surface-to-volume ratio, unique optical properties, excellent electrical conductivity, high carrier mobility and density, high thermal conductivity and many other attributes can be greatly beneficial for sensor functions. The large surface area of graphene is able to enhance the surface loading of desired biomolecules, and excellent conductivity and small band gap can be beneficial for conducting electrons between biomolecules and the electrode surface.

Graphene-based chemical sensor photo



Graphene is thought to become especially widespread in biosensors and diagnostics. The large surface area of graphene can enhance the surface loading of desired biomolecules, and excellent conductivity and small band gap can be beneficial for conducting electrons between biomolecules and the electrode surface. Biosensors can be used, among other things, for the detection of a range of analytes like glucose, glutamate, cholesterol, hemoglobin and more. Graphene also has significant potential for enabling the development of electrochemical biosensors, based on direct electron transfer between the enzyme and the electrode surface.

Graphene will enable sensors that are smaller and lighter - providing endless design possibilities. They will also be more sensitive and able to detect smaller changes in matter, work more quickly and eventually even be less expensive than traditional sensors. Some graphene-based sensor designs contain a Field Effect Transistor (FET) with a graphene channel. Upon detection of the targeted analyte’s binding, the current through the transistor changes, which sends a signal that can be analyzed to determine several variables.

Graphene-based nanoelectronic devices have also been researched for use in DNA sensors (for detecting nucleobases and nucleotides), Gas sensors (for detection of different gases), PH sensors, environmental contamination sensors, strain and pressure sensors, and more.

Commercial activities in the field of graphene sensors

In June 2015, A collaboration between Bosch, the Germany-based engineering giant, and scientists at the Max-Planck Institute for Solid State Research yielded a graphene-based magnetic sensor 100 times more sensitive than an equivalent device based on silicon.

In August 2014, the US based Graphene Frontier announced raising $1.6m to expand the development and manufacturing of their graphene functionalized GFET sensors. Their “six sensors” brand for highly sensitive chemical and biological sensors can be used to diagnose diseases with sensitivity and efficiency unparalleled by traditional sensors.

Graphene Frontiers G-FET sensorG-FET Six-Sensors

In September 2014, the German AMO developed a graphene-based photodetector in collaboration with Alcatel Lucent Bell Labs, which is said to be the world’s fastest photodetector.

In November 2013, Nokia’s Cambridge research center developed a humidity sensor based on graphene oxide which is incredibly fast, thin, transparent, flexible and has great response and recovery times. Nokia also filed for a patent in August 2012 for a graphene-based photodetector that is transparent, thin and should ultimately be cheaper than traditional photodetectors.

Further reading

Latest Graphene Sensors news

Spanish scientists open the door to using graphene in smart filters and sensors

As part of a national research collaboration, Spanish researchers including the ICN2 have reached a milestone in graphene research, that potentially brings science a step closer to using graphene in filtration and sensing applications.

The researchers have successfully synthesized a graphene membrane with pores whose size, shape and density can be tuned with atomic precision at the nanoscale. Engineering pores at the nanoscale in graphene can change its fundamental properties. It becomes permeable or sieve-like, and this change alone, combined with graphene's intrinsic strength and small dimensions, points to its future use as the most resilient, energy-efficient and selective filter for extremely small substances including greenhouse gases, salts and biomolecules.

High-speed and on-silicon-chip graphene blackbody emitters

A research team from Japan has developed an integrated, high-speed and on-chip blackbody emitter based on graphene. The team reports that the device operated in NIR region including telecommunication wavelengths. A fast response time of ~ 100 ps, which is ~ 105 higher than the previous graphene emitters, has been experimentally demonstrated for single and few-layer graphene, the emission responses can be controlled by the graphene contact with the substrate depending on the number of graphene layers.

High-speed and on-silicon-chip graphene blackbody emitters image

The team stated that graphene light emitters are greatly advantageous over conventional compound semiconductor emitters because they can be integrated on silicon chips due to simple fabrication processes of graphene emitters and direct coupling with silicon waveguide through an evanescent field. Because graphene can realize high-speed, small footprint and on-Si-chip light emitters, which are still challenges for compound semiconductors, the graphene-based light emitters can open new routes to highly integrated optoelectronics and silicon photonics.

Graphene Supercapacitors Market Report

Chinese team develops a fire-alarming wallpaper with a graphene oxide sensor

Scientists from the Shanghai Institute of Ceramics in China have developed a 'smart' wallpaper based on highly flexible fire-resistant inorganic paper embedded with ultralong hydroxyapatite nanowires that serve as the substrate and graphene oxide as the thermosensitive sensor.

GO sensor in fire alarm wallpaper image

The authors explain: "After the paper-making process, hydroxyapatite nanowires and glass fibers are assembled into a well-defined multilayered structure spontaneously, which may be explained by the mechanical equilibrium between physical and chemical forces. The nacre-like multilayered structure is regarded as an effective strategy to balance the strength and toughness".

Graphene and CNTs used together to create new stretchable aerogels

Researchers at Zhejiang University in China have designed a new type of aerogels, made of graphene and carbon nanotubes, that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. This stretchability, in addition to aerogels' existing properties like ultralow density, light weight, high porosity, and high conductivity, may lead to exciting new applications.

The scientists designed carbon aerogels consisting of both graphene and multi-walled carbon nanotubes assembled into four orders of hierarchical structures ranging from the nanometer to centimeter scale. To fabricate the material into aerogels, the researchers created an ink composed of graphene oxide and nanotubes, and then formed the aerogels via inkjet printing.

Archer and Adelaide University to develop graphene-based biosensors

Graphite company Archer Exploration has redefined its existing relationship with the University of Adelaide, by shifting developmental focus away from industrial graphite applications to more consumer-focused graphene-based products.

The collaboration will aim to develop and implement graphene and carbon-based materials for use in complex biosensing which can target applications in human health. Research will explore graphene-based materials for complex biosensing to generate patents with commercial applications and will combine AXE's graphite and graphene materials with the research and development capability of the university.

Versarien - Think you know graphene? Think again!Versarien - Think you know graphene? Think again!