Graphene and hBN nano-additives improve eco-friendly lubricant oils

Researchers from the University of Nevada have investigated the introduction of graphene nanoplatelets (GNPs) and hexagonal boron nitride (hBN) to canola oil to improve its tribological properties, as part of an effort to reduce the usage of lubricants based on petroleum as lubricants for reducing abrasion and friction.

Three nanoscale lubricating combinations were created by combining both GNP and hBN settings in varied ratios to get the best beneficial synergy. The team reports that lubrication quality and performance may be increased by using low-weight percentages of nanoparticle (NP) and microparticle additions. One benefit is that it has a reduced coefficient of friction (COF) and wearing.

Boron nitride assists in protecting graphene in order to achieve next-gen electronics

Researchers from AMO, Oxford Instruments, Cambridge University, RWTH Aachen University and the University of Wuppertal have demonstrated a new method to use plasma enhanced atomic layer deposition (PEALD) on graphene without introducing defects into the graphene itself.

Currently, the most advanced technique for depositing dielectrics on graphene is atomic layer deposition (ALD), which allows to precisely control the uniformity, the composition and the thickness of the film. The process typically used on graphene and other 2D materials is thermal water-based ALD, as it does not damage the graphene sheet. However, the lack of nucleation sites on graphene limits the quality of the dielectric film, and requires the deposition of a seed layer prior to ALD to achieve good results. Another approach is plasma enhanced atomic layer deposition (PEALD), which, when applied to growth on graphene, can introduce surface damage. This is what to team addressed in this recent work.

Researchers show that stretching can change the electronic properties of graphene

A research team led by the University of Basel has found that the electronic properties of graphene can be specifically modified by stretching the material evenly.

The researchers, led by Professor Christian Schönenberger at the Swiss Nanoscience Institute and the Department of Physics at the University of Basel, have studied how the material’s electronic properties can be manipulated by mechanical stretching. In order to do this, they developed a kind of rack by which they stretch the atomically thin graphene layer in a controlled manner, while measuring its electronic properties.

Researchers report a highly efficient graphene/hBN-based electro-absorption modulator

ICFO researchers led by Professor Frank Koppens, in collaboration with researchers from Universita di Pisa, CNIT, Ghent University-IMEC, and NIMS, have reported a novel electro-absorption (EA) modulator capable of showing a 3-fold increase in static and dynamic modulation efficiency while maintaining the high-speed, a value that surpasses those for previously reported graphene EA modulators.

 Electrical connections and schematic cross-section of an EA modulator with an hBN–HfO2–hBN dielectric image

To achieve this, the team of researchers developed a high-quality graphene-based electro-absorption modulator by combining high-quality graphene and a high-k dielectric, also used in microelectronics. The high quality of the graphene was achieved by integrating it with the 2d-material dielectric hexagonal boron nitride (hBN).

Scientists discover important new property of graphene

MIT researchers and colleagues have discovered a new and important electronic property of graphene. The work, which involves structures composed of atomically thin layers of materials that are also biocompatible, could usher in new, faster information-processing paradigms. One potential application is in neuromorphic computing, which aims to replicate the neuronal cells in the body responsible for everything from behavior to memories.

“Graphene-based heterostructures continue to produce fascinating surprises. Our observation of unconventional ferroelectricity in this simple and ultra-thin system challenges many of the prevailing assumptions about ferroelectric systems and it may pave the way for an entire generation of new ferroelectrics materials,” says Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT and leader of the work, which involved a collaboration with five other MIT faculty from three departments.