Graphene and hBN join to create unique ‘petri-dish’

Researchers at The University of Manchester and the NGI have shown how graphene and boron nitride can be used for observing nanomaterials in liquids, by creating a ‘petri-dish’ of sorts.

Graphene and hBN ''petri-dishes'' image

Scanning / transmission electron microscopy (S/TEM) is one of only few techniques that allows imaging and analysis of individual atoms. However, the S/TEM instrument requires a high vacuum to protect the electron source and to prevent electron scattering from molecular interactions. Several studies have previously revealed that the structure of functional materials at room temperature in a vacuum can significantly different from that in their normal liquid environment. So, it is important to be able to study the structure at the required state.

Graphene on hBN transistor displays remarkable cooling properties

Researchers from the Pierre Aigrain Laboratory in the ENS Physics department in Paris, France, have discovered a new cooling mechanism for electronic components made of graphene deposited on boron nitride. The efficiency of this mechanism reportedly allowed the team to reach electric intensities at the intrinsic limit of the laws of conduction.

ENS graphene transistor results imageCurrent-voltage (left) and temperature-voltage (right) characteristics of a graphene on boron nitride transistor. The transistor effect is visible by modulation of the current as a function of the gate voltage in the Zener-Klein tunnel transport regime.

Heat dissipation is vital in order to prevent deterioration or destruction of electronic components. The laws of physics dictate that increasing the density of components on a chipset implies increasing dissipation and thus heat. Nowadays, with the advances in 2D material devices, this question becomes particularly critical since components are required to be one atom thick. By producing a graphene-based transistor deposited on a boron nitride substrate, the team demonstrated a new cooling mechanism 10 times more efficient than basic heat diffusion. This new mechanism, which exploits the two-dimensional nature of the materials opens a "thermal bridge" between the graphene sheet and the substrate.

Cambridge University inkjet prints graphene-hBN FETs on textiles

Researchers from Cambridge University have demonstrated how graphene and other related 2D materials (namely hBN) can be directly printed onto textiles to create fully inkjet-printed dielectrically gated field effect transistors (FETs) with solution processed 2D materials.

Cambridge team prints graphene-hbn inks on textiles image

According to the team, these devices are washable, flexible, cheap, safe, comfortable to wear and environmentally-friendly, essential requirements for applications in wearable electronics. The team also demonstrated the first reprogrammable memories, inverters and logic gates with solution processed 2D materials by coupling these FETs together to create integrated circuits, the most fundamental components of a modern-day computer.

Columbia researchers observe exotic quantum particle in bilayer graphene

Scientists from Columbia University have reportedly proven a 30-year-old theory called "the even-denominator fractional quantum Hall state" and established bilayer graphene as a promising platform that could lead to quantum computation.

Columbia team observes exotic quantum particle in graphene image

The team observed an intensely studied anomaly in condensed matter physics—the even-denominator fractional quantum Hall (FQH) state—via transport measurement in bilayer graphene. “Observing the 5/2 state in any system is a remarkable scientific opportunity, since it encompasses some of the most perplexing concepts in modern condensed matter physics, such as emergence, quasi-particle formation, quantization, and even superconductivity,” the team says. “Our observation that, in bilayer graphene, the 5/2 state survives to much higher temperatures than previously thought possible not only allows us to study this phenomenon in new ways, but also shifts our view of the FQH state from being largely a scientific curiosity to now having great potential for real-world applications, particularly in quantum computing.”

Versarien to supply graphene to the CPI

Versarien LogoThe advanced materials engineering group Versarien announced that it has won a tender for the ongoing supply of nanomaterials to the Centre for Process Innovation. Versarien will supply up to 1.2 kilograms of graphene in a variety of forms to the CPI, in addition to hexagonal layer boron nitride.

Neill Ricketts, chief executive of Versarien, said: "We are very pleased to have been successful in all the tenders we entered into to supply the CPI with our nanomaterials after a competitive process". "For Versarien this is an important route for the commercialization of products enhanced by graphene and other related materials", "We continue to receive record levels of enquires from potential purchasers of our products globally and look forward to making further announcements as appropriate," Ricketts said.

PlanarTECH - The 2D Materials Solution ProviderPlanarTECH - The 2D Materials Solution Provider