Korean researchers fabricate ordered graphene quantum dot arrays

A new study led by the Ulsan National Institute of Science and Technology in South Korea reveals a technology capable of fabricating highly ordered arrays of graphene quantum dots.

Korean researchers fabricate ordered graphene quantum dot arrays imageGraphene quantum dots of various sizes in a stable, ordered array

The research team demonstrated a novel way of synthesizing GQDs, embedded inside a hexagonal boron nitride (hBN) matrix. Thus, they demonstrated simultaneous use of in-plane and van der Waals heterostructures to build vertical single-electron tunneling transistors.

Graphene/hBN ceramic could act as a sensor for structures and aircraft

Rice University and Iran University of Science and Technology researchers have found a unique ceramic material that could act as a sensor for structures.

Graphene/hBN ceramic could act as a sensor for structures and aircraft image

The ceramic becomes more electrically conductive under elastic strain and less conductive under plastic strain, and could lead to a new generation of sensors embedded into structures like buildings, bridges and aircraft able to monitor their own health.

Graphene enables low-dimensional spintronics at room temperature

Graphene Flagship researchers produced graphene-based spintronics devices that utilize both electron charge and spin at room temperature. Demonstrating the spin’s feasibility for bridging distances of up to several micrometres, these results may open the door to new possibilities for integrating information-processing and storage in a single chip.

The Graphene Flagship program recognizes the potential of spintronics devices made from graphene-related materials. Researchers from different universities successfully showed that it is possible to manipulate graphene’s spin properties in a controlled manner at room temperature. These results inspire new directions in the development of spin-logic devices and quantum computing. “With miniaturization a major driving force behind the electronics industry, graphene opens new possibilities for compacting spin-logic operations with magnetic memory elements in a single platform,” notes Catalan Institution for Research and Advanced Studies (ICREA) Research Professor Stephan Roche, who has been leading the Graphene Flagships Spintronics Work Package since its inception.

Researchers design novel graphene-based terahertz detector

A team of researchers from Russia, UK, Japan and Italy has created a graphene-based terahertz detector.

Researchers design novel graphene-based terahertz detector image

The team explains that the reason for the inefficiency of existing terahertz detectors is the mismatch between the size of the detecting element, the transistor—about one-millionth of a meter—and the typical wavelength of terahertz radiation, which is about 100 times greater. This results in the wave passing the detector by without any interaction.

Researchers turn graphene into a molecular toggle switch

A team of researchers from Denmark, Italy and Portugal recently discovered a new mechanism for controlling electronic devices using molecules. The researchers have shown that the ferroelectric ordering of polar molecules attached to the edge of graphene can be toggle-switched by an electrostatic gate and can be used for memory devices and sensors.

turning graphene into a molecular toggle switch image

Molecular electronics aims to use individual molecules to control electronics. The large library of molecules and techniques to modify them can create more sophisticated electronics than previously thought possible. The normal hindrance is the small size of the molecules. It's possible to create them, but they are incredibly difficult to handle. It is almost impossible to manipulate small enough features in ordinary materials to electrically connect with individual molecules.

XFNANO: Graphene and graphene-like materials since 2009 XFNANO: Graphene and graphene-like materials since 2009