Cambridge Raman Imaging selected to coordinate a European Union grant to transform cancer diagnosis and treatment

Cambridge Raman Imaging (CRI) has announced it was selected to coordinate a project that received a €3.3 million grant in the European Innovation Council’s (EIC) Transition call.

The project, called CHARM, aims to develop a medical device based on high-speed, low-cost Raman digital imaging technology and artificial intelligence to transform cancer diagnosis and treatment. The technology will analyze the molecular composition of patient tissue samples to distinguish cancerous from healthy cells without the need for chemical staining.

Researchers develop a graphene-based phonon laser

A team of researchers, led by Professor Konstantin Arutyunov of the HSE Tikhonov Moscow Institute of Electronics and Mathematics (MIEM HSE), has developed a graphene-based mechanical resonator, in which coherent emission of sound energy quanta, or phonons, has been induced. Such devices, called phonon lasers, could have wide potential for applications in information processing, as well as classical and quantum sensing of materials.

Using an analogy with photons, quanta of the electromagnetic spectrum, there are also particles of sound energy, phonons. In fact, these are artificially introduced objects in physics—quasi-particles, which correspond to vibrations of the crystal lattice of matter.

The Graphene Light project recieves funds to produce prototype devices

In May 2017 we reported the the Institute of Low Temperature and Structure Research (Wroclaw, Poland) developed a new efficient white light source that uses graphene foam excitated by a continuous-wave laser. We have seen a demonstration of the technology at IDTechEx 2019 (see video below).

We have recently spoken with Prof. Krzysztof Piech who updated us on the project's process. Prof. Piech tells us that the research team received a grant of around $130,000 to develop the technology, and are expecting to soon receive a $270,000 grant that will enable the production of a series of prototypes. We hope to update once these prototypes can be demonstrated.

The Graphene Light project demonstrates its laser graphene foam lighting device

In May 2017 we reported on a new project at the Institute of Low Temperature and Structure Research (Wroclaw, Poland) that developed a new efficient white light source that uses graphene foam excitated by a continuous-wave laser.

The project is still in progress, and the researchers demonstrated the technology at IDTechEx Graphene & 2D Materials Europe 2019 earlier this month, as can be seen in our video above.

Researchers explain the phenomenon of particle-antiparticle annihilation in graphene

Researchers from the Moscow Institute of Physics and Technology (MIPT) in Russia and Tohoku University in Japan have explained the phenomenon of particle-antiparticle annihilation in graphene, recognized by specialists as Auger recombination.

Teams explain the phenomenon of particle-antiparticle annihilation in graphene imageTwo scenarios of electron-hole recombination in graphene: radiative recombination (left) and Auger recombination (right) in which the energy is picked up by an electron passing by

Despite persistently being spotted in experiments, it was thought to be prohibited by the fundamental physical laws of energy and momentum conservation. The theoretical explanation of this process has until recently remained one of the greatest puzzles of solid-state physics.