Covid-19 and graphene, a current overview

The Coronavirus pandemic has been having a significant impact on the graphene market and industry. Even before the pandemic, graphene has already received much attention due to promising antimicrobial properties and demonstrated antiviral efficacy. However, there is no denying the recent urgency to put these traits to good use in combating the Coronavirus.

More than a few companies have launched graphene-enhanced textiles, inks and coatings, incorporated into personal protective gear (face masks, gloves etc.), and applications like air filters and room cleansers have been developed.

Graphene production systems maker planarTECH launches an equity crowdfunding campaign to support its future growth potential

UK-based planarTECH is launching an equity crowdfunding campaign at on Seedrs, as part of Graphene-Info's Graphene Crowdfunding Arena. planarTECH aims to expand its current business and also initiate new graphene endeavors.

planarTECH planarGROW 8S photo

planarTECH, founded in 2014, supplies CVD equipment for the production of high quality graphene sheets, as well as other 2D materials. The company was focused on research institutes, and already sold over 65 systems with a customer list that includes Manchester University, the University of Cambridge, Stanford University and the National University of Singapore.

Graphene and other 2D materials form an enhanced heat protector for electronics

Researchers from Stanford, NIST, Theiss Research and several others have designed a new heat protector that consists of just a few layers of atomically thin materials, to protect electronics from excess heat.

Cross-section schematic of Gr/MoSe2/MoS2/WSe2 sandwich on SiO2/Si substrate imageCross-section schematic of Gr/MoSe2/MoS2/WSe2 sandwich on SiO2/Si substrate, with the incident Raman laser

The heat protector can reportedly provide the same insulation as a sheet of glass 100 times thicker. “We’re looking at the heat in electronic devices in an entirely new way,” said Eric Pop, professor of electrical engineering at Stanford and senior author of the study.

Stanford team finds novel form of magnetism in twisted bi-layer graphene

Stanford physicists recently observed a novel form of magnetism, predicted but never seen before, that is generated when two graphene sheets are carefully stacked and rotated to a special angle. The researchers suggest the magnetism, called orbital ferromagnetism, could prove useful for certain applications, such as quantum computing.

bi-layer graphene between hBN gives off orbital ferromagnetism imageOptical micrograph of the assembled stacked structure, which consists of two graphene sheets sandwiched between two protective layers made of hexagonal boron nitride. (Image: Aaron Sharpe)

“We were not aiming for magnetism. We found what may be the most exciting thing in my career to date through partially targeted and partially accidental exploration,” said study leader David Goldhaber-Gordon, a professor of physics at Stanford’s School of Humanities and Sciences. “Our discovery shows that the most interesting things turn out to be surprises sometimes.”

Graphene coating on copper wires may help prevent electromigration and help minimize future electronics

As electronics keep shrinking in size, several problems arise. One of these is that the copper wires that connect transistors to form complex circuits need to be very thin, but carry so much current that can cause them to break apart due to atoms being knocked out of place. One way of solving this, studied by a group led by Stanford University, is to wrap copper with graphene. The group found that this can alleviate this major problem called electromigration.

This was presented at a recent IEEE meeting that addressed the coming problems for copper interconnects and debated ways of getting around them. Growing graphene around copper wires can help prevent electromigration, and also seems to bring down the resistance of the copper wires. Generally speaking, the narrower the wire, the higher its resistance. “Interconnects have had to shrink while increasing the current densities by 20 times,” said Intel Fellow Ruth Brain at the meeting.