South Korean researchers develop a graphene device controlled by static electricity

A research team from the South Korean Sungkyunkwan University has developed a technology that can control graphene electronic device through static electricity. The team has developed a gate that utilizes the graphene electrostatic phenomenon; Static electricity that occurs from friction is trapped inside of a lower board and serves as a gate. Unlike current materials, formation, modification, and elimination are said to be possible with this technology.

The team aims to make the process that forms a gate which will control current from an electronic device unnecessary. As a result, integration with high density should be possible and it is expected that this technology will reduce cost and time to manufacture electronic devices.

Graphene enables stretchable reliable memory device for next-gen electronics

Researchers at the Korean IBS, in collaboration with Sungkyunkwan University, have designed a novel graphene-based stretchable and flexible memory device for wearable electronics.

The team has constructed a memory called two-terminal tunnelling random access memory (TRAM), where two electrodes, referred to as drain and source, resemble the two communicating neurons of the synapse in the brain. While mainstream mobile electronics use the so-called three-terminal flash memory, the advantage of two-terminal memories like TRAM is that two-terminal memories do not need a thick and rigid oxide layer. While Flash memory is more reliable and has better performance, TRAM is more flexible and can be scalable, according to the team.

A novel method of opening a band gap in graphene allows for high-performance transistors

Researchers at Sungkyunkwan University and the Institute for Basic Science in Suwon, South Korea have designed a new method for opening up a band gap in graphene to allow the construction of graphene-based transistors.

In this study, the scientists have opened a band gap in graphene by carefully doping both sides of bilayer graphene in a way that avoids creating disorder in the graphene structure. Delicately opening up a band gap in graphene in this way enabled the researchers to fabricate a graphene-based memory transistor with the highest initial program/erase current ratio reported to date for a graphene transistor (34.5 compared to 4), along with the highest on/off ratio for a device of its kind (76.1 compared to 26), while maintaining graphene's naturally high electron mobility (3100 cm2/V·s).

Researchers use leaves as inspiration for graphene-based micro supercapacitor

An international team of researchers from the Center for Integrated Nanostructure Physics at the Institute for Basic Science (IBS) and Department of Energy Science at Sungkyunkwan University in South Korea, has devised a new technique for creating a graphene-based MSC (solid-state micro-supercapacitor) that is said to deliver improved electrochemical performance, with a design based on the intricate design of leaves.

The team designed their MSC film structure in compliance with vein-textured leaves in order to take advantage of the natural transport pathways which enable efficient ion diffusion parallel to the graphene planes found within them. To create this efficient shape, the team layered a graphene-hybrid film with copper hydroxide nanowires. After many alternating layers they achieved the desired thickness, and added an acid solution to dissolve the nanowires so that a thin film with nano-impressions was all that remained.

Korean scientists design small and efficient graphene-polymer batteries

Researchers from the Korean Sungkyunkwan University announced the development of a sponge-like electrode material using graphene and a polymer that enables the assembly of a light and efficient graphene battery.

The electrode was made from porous graphene aerogel that was a result of combining alcohol and graphene. The graphene aerogel electrode material is easily compressed and highly durable, with about 90-99.9 percent of it filled with air and pores smaller than 100 nanometers that form a 3D web.