Article last updated on: Jan 29, 2019

What is a foam?

A foam is a substance in which gas is trapped in a liquid or a solid in pockets. There are many types of foams - for example, those used by firefighters (mostly to combat burning oils). A bread is also, at least formally, a type of foam.

Graphene Foams

Graphene foams are usually made by growing graphene using a CVD process on a 3D metal foam (structure). The metal is then removed which leaves the graphene 3D foam.

A graphene foam is strong and conductive and useful for many applications - sensors, purification/absorption materials - and more.

Graphene foams are somewhat similar to graphene aerogels, in which the liquid part of the gel is replaced by a gas (usually air).

Graphene foams are now available commercially, contact us for details.



The latest graphene foam news:

Researchers develop sensors based on graphene foam for better prosthetics and robotics

Researchers from Integrated Graphene and the University of the West of Scotland (UWS) have reported a project to develop graphene-enhanced pressure sensors that provide enhanced capabilities to robots, helping improve their motor skills and dexterity. The project was supported by the Scottish Research Partnership in Engineering (SRPe) and the National Manufacturing Institute for Scotland (NMIS) Industry Doctorate Program in Advanced Manufacturing.

Professor Des Gibson, Director of the Institute of Thin Films, Sensors and Imaging at UWS and project principal investigator, said: “Over recent years the advancements in the robotics industry have been remarkable, however, due to a lack of sensory capabilities, robotic systems often fail to execute certain tasks easily. For robots to reach their full potential, accurate pressure sensors, capable of providing greater tactile ability, are required. Our collaboration with Integrated Graphene Ltd, has led to the development of advanced pressure sensor technology, which could help transform robotic systems.”

Ford Motor develops graphene-enhanced PU foam that lowers noise and weight in vehicles

At a recent conference, Ford Motor presented its innovative graphene-enhanced polyurethane (PU) foam that reduces noise in automobiles while also lowering their weight. The material was chosen as a finalist for the Polyurethane Innovation Award, given by the Center for the Polyurethanes Industry (CPI) during the conference. The foam is said to be used in all of Ford's North American vehicles.

One of the biggest challenges in developing the foam was dispersing a nanomaterial like graphene into a viscous polymer and keeping it from collapsing during mixing, said Alper Kiziltas, technical expert, sustainability and emerging materials at Ford.

Researchers experiment with LIG to create improved wearable health devices

A Penn State-led international research team (led by Professor Huanyu “Larry” Cheng at Penn State) recently published two studies that could boost research and development of future motion detection, tactile sensing and health monitoring devices.

Graphene made with lasers for wearable health devices image

There are various substances that can be converted into carbon to create graphene through laser radiation, in a process called laser-induced graphene (LIG). The resulting product can have specific properties determined by the original material. The team set out to test this process and has reached interesting conclusions.

Graphene foam assists in building a "thermal switch" that dynamically moderates heat of electronic devices

lithium ion batteries used in extreme heat or cold can be prone to malfunctions and low performance. Purdue University engineers have developed a solution: a "thermal switch" made of compressible graphene foam, that dynamically adjusts to temperatures both inside and outside the device to maintain consistent thermal management.

“As electronic devices get smaller and more powerful, managing heat becomes a more crucial issue,” said Xiulin Ruan, professor of mechanical engineering, who studies nanoscale heat transfer and sustainable energy. “Most devices use passive thermal management, such as conduction and convection, to move excess heat. But this system isn’t tunable or adjustable, and doesn’t help at all in cold conditions.”

Integrated Graphene launches 3D graphene foam and raises almost USD$4 million

Integrated Graphene logo image Integrated Graphene (formerly known as RD Graphene), developers of hyper-sensitive 3D graphene foam electrodes, have set their aims on the human diagnostics market and are aiming to enable better biosensors with improved performance and speed. The company has launched its flagship 3D graphene foam process in their first product, Gii-Sens.

The company launched its first product in conjunction with its new Integrated Graphene brand, in hopes that these steps will mark the first steps on an ambitious commercial journey to establish themselves as a leading producer of pure 3D graphene foam. In addition, the Company led a funding round in which it has raised £3.1 million (almost USD$4 million). This latest investment round follows £300,000 in seed funding from six private investors in March 2019, plus a variety of grant funding totaling £1.8m raised since 2014.