What is ink?

Ink is a mixture of ingredients formulated to create a substance containing pigments or dyes that is used to color a surface. Inks usually come in liquid or paste form, and can be divided into four general classes of aqueous, liquid, paste and powder.

Inks photo

Most inks contain four basic components: colorants (that grant color and opacity), binders (mostly resins that serve to hold together other components), additives (like wax or chalk, used to grant specific traits) and carrier substances (like oils, which allow the ink to flow, spread and transfer). The ink industry is valued at over $10 billion as ink is somewhat ubiquitous and found in writing paraphernalia and print (including newspapers and books).

What are the common types of ink?

Inks are roughly divided into printing inks and writing inks. Writing inks, like the ones found in pens, started out using water-based dye systems and evolved into paste oil-based dyes that improve ink flow, and are generally more non smearing and quicker to dry than water-based systems.

Printing inks are categorized in two groups: inks for conventional printing (using a mechanical plate that transfers an image to the printed object) and inks for non-impact printing like ink-jet and electrophotographic technologies.

Conductive inks

Conductive inks contain components that provide the function of conductivity. Such components may be comprised of silver, carbon, graphite, or other precious metal coated base material. Common conductive inks can be classified into three categories: noble metals, conductive polymers, and carbon nanomaterials. Conductive inks can be used in various ways, including screen printing, flexographic or rotogravure, spray, dip, and more. A selection of conductive inks are offered on the market, to meet the demands of many applications: electronics, sensors, antennae, touch screens, printed heaters and more.



What is graphene?

Graphene is the thinnest and strongest material known to man. It is also an excellent electrical and heat conductor that has unique optical properties. Graphene is a 2D material made of carbon atoms, arranged in a honeycomb lattice. Its myriad qualities make graphene worthy of the title “wonder material”, with endless potential for all sorts of applications from membranes to electronics.

3D Graphene render

Graphene inks

Carbon nanomaterials offer many possibilities for printed and flexible electronics. The electrical properties of carbon nanotubes and graphene are particularly promising, and have been exploited in a number of applications from thin-film transistors (TFTs) and electrochemical sensors to supercapacitors and photovoltaics. Due to its high charge carrier mobility, superlative thermal and chemical stability and intrinsic flexibility, graphene has been demonstrated for a number of applications in printed electronics including chemical and thermal sensors, supercapacitors and more.

Graphene inks expand the possibilities for applications such as printed electronics, packaging and electronics, but often need to be specially formulated or adjusted for specific uses, like unique substrates or processing/printing methods (rotogravure, flexo, or screen printing processes etc.) as demands vary for the different uses. Screen printing, for example, usually requires optimal coverage capability while flexographic printing warrants rapid drying.

The graphene inks market

The graphene market can be a confusing one. While there are some companies that sell graphene inks, like Haydale and Vorbeck Materials, many other companies are involved in different aspects of the market. For example, Angstron Materials do not sell graphene inks but offer graphene nanoplatelets (GNPs) that can be dispersed in solvent to create graphene ink of sorts. Other companies are in various stages of developing graphene inks and accessory products. Graphene 3D printing can be done by using a liquid similar to ink, yet it is different than the inks that are used for other applications.

If you’re interested in graphene inks and wish to find the one suitable for your needs, contact Graphene-info - the graphene experts. We use our unique market familiarity and understanding to assist you in finding exactly what you are looking for.

Further reading

Latest Graphene Ink news

Applied Graphene Materials enters agreement to develop and commercialize a new graphene ink technology

May 24, 2017

Applied Graphene Materials logoApplied Graphene Materials has outlined details of a new graphene-enhanced ink technology and signed a development deal with the University of Sheffield Advanced Manufacturing Research Center. A patent for this new development, called Structural Ink, has been registered and once fully commercialized, the product will be targeted at the advanced composites industry.

The technology will aim to enable users to increase mechanical toughness, through the addition of graphene. This is ultimately designed to improve performance, enable further weight reduction and reduce total manufacturing costs.

Graphene Flagship team creates transistors printed with graphene and other layered materials

Apr 09, 2017

Graphene Flagship researchers from AMBER at Trinity College Dublin, in collaboration with scientists from TU Delft, Netherlands, have fabricated printed transistors consisting entirely of layered materials. The team's findings are said to have the potential to cheaply print a range of electronic devices from solar cells to LEDs and more.

The team used standard printing techniques to combine graphene flakes as the electrodes with other layered materials, tungsten diselenide and boron nitride as the channel and separator to form an all-printed, all-layered materials, working transistor.

Graphene Oxide market report

Graphene ink photo wins science photography competition's first prize

Apr 05, 2017

An image of graphene ink in alcohol has won the overall prize in a national science photography competition, organized by the Engineering and Physical Sciences Research Council (EPSRC). 'Graphene - IPA Ink', by James Macleod, from the University of Cambridge, shows ink which is forced at high pressure through micrometre-scale capillaries made of diamond. This rips the layers apart resulting in a smooth, conductive material in solution.

Graphene ink pic winner of contest image

The image came first in two categories: Innovation, and Equipment and Facilities, as well as winning overall against many other stunning pictures, featuring research in action, in the EPSRC's competition - now in its fourth year.

Graphene-perovskite large area solar cell achieves record efficiency

Mar 07, 2017

Researchers at the Centre for Hybrid and Organic Solar Energy (CHOSE) of the University of Rome “Tor Vergata”, along with researchers at the Italian Institute of Technology (IIT) and the University of Applied Sciences in Crete (TEI), have stated that they set a new record for conversion efficiency of a perovskite photovoltaic module with an area larger than 50 cm2.

Perovskite-graphene large area solar cell with record efficiency image

The success was achieved as part of Graphene Flagship, the 1 billion euro European project that promotes graphene-based innovation in sectors like energy, electronics, technology and medicine. Perovskites photovoltaic modules' efficiency is usually demonstrated in the laboratory on cells less than 1 cm2 in size, whereas the new test was performed on modules with an area larger than 50 cm2. The electronic and chemical properties offered by graphene have made it possible to overcome the many difficulties related to the realization of large-area perovskite solar panels.

Cambridge team develops a method for producing conductive graphene inks with high concentrations

Feb 22, 2017

Researchers at the Cambridge Graphene Centre at the University of Cambridge, UK, have designed a method for producing high quality conductive graphene inks with high concentrations. Conductive inks are useful for a range of applications, including printed and flexible electronics, transistors, and more.

The method uses ultrahigh shear forces in a microfluidization process to exfoliate graphene flakes from graphite. The process is said to convert 100% of the starting graphite material into usable flakes for conductive inks, avoiding the need for centrifugation and reducing the time taken to produce a usable ink. The research also describes optimization of the inks for different printing applications, as well as giving detailed insights into the fluid dynamics of graphite exfoliation.