Rice team designs graphene-based air filter that grabs and zaps pathogens

Rice University team under chemist James Tour has transformed their laser-induced graphene (LIG) into self-sterilizing filters that grab pathogens out of the air and kill them with small pulses of electricity. This may be of special interest to hospitals, where according to the Centers for Disease Control and Prevention, patients have a 1-in-31 chance of acquiring a potentially antibiotic-resistant infection during hospitalization.

Rice team creates self-sterilizing LIG air filters that show potential for use in hospitals image

The device reportedly captures bacteria, fungi, spores, prions, endotoxins and other biological contaminants carried by droplets, aerosols and particulate matter.

AGM and Infinite Composites develop graphene composite material for space exploration

Applied Graphene Materials logoApplied Graphene Materials (AGM) and pressure vessel manufacturer Infinite Composites Technologies have collaborated to develop a composite material for space exploration.

The partnership saw the use of AGM’s graphene technology in two resin systems for cryogenic pressure tanks. These vessels are currently being explored by Nasa for use in several spaceflight missions, as well as International Space Station Experiments (MISSE), Artemis and Lunar Gateway programmes.

Chalmers team designs a graphene-based detector that may revolutionize space telescopes

Researchers from Chalmers University of Technology have demonstrated a graphene-based detector with the potential to revolutionize the sensors used in next-generation space telescopes. Beyond superconductors, there are few materials that can meet the requirements for making ultra-sensitive and fast terahertz (THz) detectors for astronomy. Chalmers researchers have shown that engineered graphene adds a new material paradigm for THz heterodyne detection.

"Graphene might be the only known material that remains an excellent conductor of electricity/heat even when having, effectively, no electrons. We have reached a near zero-electron scenario in graphene, also called Dirac point, by assembling electron-accepting molecules on its surface. Our results show that graphene is an exceptionally good material for THz heterodyne detection when doped to the Dirac point," says Samuel Lara-Avila, assistant professor at the Quantum Device Physics Laboratory and lead author of the paper.

Applied Graphene Materials launches graphene-enhanced thermally conductive epoxy paste adhesives

Applied Graphene Materials logoApplied Graphene Materials recently added new adhesive materials to their portfolio, aimed at the Space and Defense sectors. These are said to be two unique graphene-enhanced thermally conductive epoxy paste adhesive systems, called AGM TP300 and AGM TP400

These novel epoxy adhesive systems reportedly exhibit high levels of thermal conductivity (between 3 and 6 W/mK), combined with excellent mechanical, adhesive and outgassing performance. Most significantly these properties are achieved with cured resin densities as low as 40% that of competitive conductive adhesives on the market. AGM’s TP 300/400 products are therefore highly versatile, while providing end users with significant savings in both mass and cost.

Haydale receives funding to develop Airbus-approved space technology

Haydale logoHaydale has been awarded a contract by the European Space Agency (ESA), which is seeking to develop non-metallic gas tanks for spacecraft propulsion systems in a technology de-risking project.

The demand for small satellite launches has created a challenge within the existing space propulsion supply chain for low-cost reliable components. With the constellation market set to increase rapidly, the development of components that meet these criteria is critical. Haydale's non-metallic system reportedly offers a low-cost alternative with reduced lead time that can be offered in a wider range of configurations to exactly suit the end user requirement.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!