Graphene Flagship research teams prepare to test graphene's potential for aerospace applications

The Graphene Flagship has announced preparations for two new experiments in collaboration with the European Space Agency (ESA), to test the viability of graphene for space applications. Both experiments will launch between 6-17th November 2017, testing graphene in zero-gravity conditions to determine its potential in space applications.

Graphene Flagship aerospace experiments image

One of the two experiments (named GrapheneX) will be fully student-led, by a team of Graphene Flagship graduate students from Delft Technical University in the Netherlands. The team will use microgravity conditions in the ZARM Drop Tower (Bremen, Germany) to test graphene for light sails. By shining laser light on suspended graphene-membranes from Flagship partner Graphenea, the experiment will test how much thrust can be generated, which could lead to a new way of propelling satellites in space using light from lasers or the sun.

Read the full story Posted: Jul 08,2017

Cambridge team develops a method for producing conductive graphene inks with high concentrations

Researchers at the Cambridge Graphene Centre at the University of Cambridge, UK, have designed a method for producing high quality conductive graphene inks with high concentrations. Conductive inks are useful for a range of applications, including printed and flexible electronics, transistors, and more.

The method uses ultrahigh shear forces in a microfluidization process to exfoliate graphene flakes from graphite. The process is said to convert 100% of the starting graphite material into usable flakes for conductive inks, avoiding the need for centrifugation and reducing the time taken to produce a usable ink. The research also describes optimization of the inks for different printing applications, as well as giving detailed insights into the fluid dynamics of graphite exfoliation.

Read the full story Posted: Feb 22,2017

Industrial-academic collaboration develops stable and consistent graphene electronic devices

Researchers from Graphenea, Thales, CNRS, the University of Cambridge and GERAC have announced the development of a stable platform for manufacturing electronic devices made of graphene. Graphene field effect transistors (GFETs) made using this platform are shown to be stable against atmospheric influences and uniform in their properties across a batch of more than 500 devices.

The researchers reported on a statistical analysis and consistency of electrical performance of GFETs on a large scale. The devices were protected and passivated with two protective layers that ensured that the conductance minimum characteristic of electrical transport in graphene is visible most of the time and that it fluctuates very little from device to device. The intrinsic charge doping was below 5x1011 cm-2. In addition, this approach removed the hysteresis effect that usually degrades graphene device performance in air. Importantly, the devices were also stable in time, with unchanged performance over the course of one month.

Read the full story Posted: Feb 02,2017

Graphene enables ultrahigh sensitivity infrared detectors

Researchers from the Graphene Flagship, working at the University of Cambridge (UK), Emberion (UK), the Institute of Photonic Sciences (ICFO; Spain), Nokia UK, and the University of Ioannina (Greece) have developed a novel graphene-based pyroelectric bolometer - an infrared (IR) detector with record high sensitivity for thermal detection, capable of resolving temperature changes down to a few tens of µK. This work may open the door to high-performance IR imaging and spectroscopy.

Cambridge team develops sensitive IR bolometer

The technology is focused on the detection of the radiation generated by the human body and its conversion into a measurable signal. The key point is that using graphene, the conversion reaches performance more than 250 times better than the best sensor already available. But the high sensitivity of the detector could be of use for spectroscopic applications beyond thermal imaging. With a high-performance graphene-based IR detector that gives a strong signal with less incident radiation, it is possible to isolate different parts of the IR spectrum. This is of key importance in security applications, where different materials explosives, for instance can be distinguished by their characteristic IR absorption or transmission spectra.

Read the full story Posted: Feb 02,2017

Versarien acquires UK's Cambridge Graphene

Cambridge Graphene logoVersarien has acquired a majority stake in Cambridge Graphene, a spin-out company from the University of Cambridge established in May 2014 to commercialize graphene inks. Versarien acquired a 85% stake for £180,000 - which values the entire Cambridge Graphene company at £200,000.

Cambridge Graphene develops inks based on graphene and related materials using processes developed at the Cambridge Graphene Center. The spin-out company has commercialized graphene inks for novel technology applications.

Read the full story Posted: Jan 22,2017

Graphene successfully turned into a superconductor

Researchers at the University of Cambridge, managed to activate graphene's potential to superconduct by coupling it with a material called praseodymium cerium copper oxide (PCCO). The researchers suggest that superconductive graphene could have interesting applications; It could be used to create new types of superconducting quantum devices for high-speed computing, and it might also be used to prove the existence of a form of superconductivity known as "p-wave" superconductivity, which academics have been struggling to verify for many years.

Graphene's ability to superconduct has been speculated but thus far has only been achieved by doping it with, or by placing it on, a superconducting material - a process that can compromise some of its other properties. "Placing graphene on a metal can dramatically alter the properties so it is technically no longer behaving as we would expect," the team stated. "What you see is not graphene's intrinsic superconductivity, but simply that of the underlying superconductor being passed on."

Read the full story Posted: Jan 19,2017

Scientists use graphene ink to create conductive cotton textiles

Researchers at the University of Cambridge in the UK and Jiangnan University in China have designed a low-cost, sustainable and environmentally-friendly method for making conductive cotton textiles using graphene-based ink. These fabrics could lead to smart textiles and interactive clothes that will find applications in healthcare, wearables, Internet of Things and more.

The team created inks of chemically modified graphene flakes that are more adhesive to cotton fibers than unmodified graphene. Heat treatment after depositing the ink on the fabric improves the conductivity of the modified graphene. The adhesion of the modified graphene to the cotton fiber is similar to the way cotton holds colored dyes and allows the fabric to remain conductive after several washes.

Read the full story Posted: Nov 28,2016

Graphene Flagship team creates graphene-based quantum LEDs that emit single photons

Researchers from the Graphene Flagship have used layered materials including graphene, boron nitride and a transition metal dichalcogenide (TMD) to create all electrical quantum LEDs which can emit single photons. The devices are said to have the potential to act as on-chip photon sources in quantum information applications.

The LEDs are made of thin layers of different materials, stacked to form a heterostructure. Electrical current is injected into the device, tunnelling from single layer graphene, through a tunnel barrier of a few layers of boron nitride and into a mono- or bilayer of a transition metal dichalcogenide (TMD), such as tungsten diselenide (WSe2). In this layer, electrons recombine with holes to emit single photons.

Read the full story Posted: Sep 26,2016

Graphene enables ultra high performance infrared photodetectors

Researchers from the University of Cambridge developed a high performance room temperature graphene-based mid-infrared photodetectors. So-called "bolometers" usually feature a very low temperature coefficient of resistance (TCR) - between 2% and 4% / K.

Graphene room temperature MIR pyroelectric bolometer image

The unique properties of graphene, coupled with a novel device concept enabled the researchers to achieve ultra high performance - a TCR as high as 900%/K. The researchers hope that this device could in the future be used in astronomy, medicine imaging, automotive and even smartphone infra-red cameras.

Read the full story Posted: Aug 28,2016

Novalia and CGC develop graphene-based inks for high-speed manufacturing of printed electronics

Researchers at the University of Cambridge, in collaboration with Cambridge-based technology company Novalia, developed a method that allows graphene and other electrically conducting materials to be added to conventional water-based inks and printed using typical commercial equipment.

The method works by suspending tiny particles of graphene in a ‘carrier’ solvent mixture, which is added to conductive water-based ink formulations. The ratio of the ingredients can be adjusted to control the liquid’s properties, allowing the carrier solvent to be easily mixed into a conventional conductive water-based ink to significantly reduce the resistance. The same method works for materials other than graphene, including metallic, semiconducting and insulating nanoparticles.

Read the full story Posted: Mar 21,2016