Graphex Group to establish a second spherical graphite production site in China

This is a sponsored post by The Graphex Group

The Graphex Group Ltd (GRFXY listed on OTCQX), a leading developer of graphene products and technologies and a manufacturer of spherical graphite and graphene technology for the renewable energy sector, has set up an indirect wholly-owned subsidiary, Heilongjiang Province Graphex New Material Technology Company Limited (“HLJ Province Graphex”) at Qitaihe City of the Heilongjiang Province of China.

Graphex's manufacturing facility for spherical graphite is strategically located in Heilongjiang Province, which is rich in high-quality natural graphite reserves. Once HLJ Province Graphex’s new production facility is fully online, the company expects to increase annual production by 30,000 tons to a total of 40,000 tons.

Graphene-Info updates all its graphene market report

Today we published new versions of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to April 2021.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

New rGO-based material could improve energy storage devices and supercapacitors

Researchers from Tomsk Polytechnic University (TPU), along with collaborators from the University of Lille in France, have synthesized a new material, based on reduced graphene oxide (rGO), for energy storage devices and supercapacitors.

Researchers design rGO-based electrode materials for high-performance symmetric supercapacitor image

The rGO modification technique that involves the use of organic molecules, derivatives of hypervalent iodine, reportedly enabled acquiring a material that is capable of storing 1.7 times more electrical energy.

Graphene-Info updates all its graphene market report (January 2021)

Today we published new versions of all our graphene market reports. Graphene-Info provides comprehensive niche graphene market reports, and our reports cover everything you need to know about these niche markets. The reports are now updated to January 2021.

Graphene batteries market report 3D cover

The Graphene Batteries Market Report:

  • The advantages using graphene batteries
  • The different ways graphene can be used in batteries
  • Various types of graphene materials
  • What's on the market today
  • Detailed specifications of some graphene-enhanced anode material
  • Personal contact details into most graphene developers

The report package provides a good introduction to the graphene battery - present and future. It includes a list of all graphene companies involved with batteries and gives detailed specifications of some graphene-enhanced anode materials and contact details into most graphene developers. Read more here!

Researchers design ultra-thick 3D graphene frameworks for high-performance flexible micro-supercapacitors

A group of researchers, led by Prof. WANG Zhenyang from the Institute of Solid State Physics of the Hefei Institutes of Physical Science (HFIPS), has reported a novel graphene-based method to prepare high-performance supercapacitors with ultra-high energy storage density.

Improved laser inducing growth process of ultra-thick 3D graphene frameworks with hierarchical pores imageSchematic illustration for the improved laser inducing growth process of ultra-thick 3D graphene frameworks with hierarchical pores. (Image by CAS)

The team explained that constructing 3D graphene frameworks with ultra-thickness and rich ion transport paths is of great significance for the practical application of graphene supercapacitors. However, in thicker electrodes, the overall energy storage capability is limited by insufficient delivery of ions to the electrode material surface and the poor electron transport properties.