Graphene biosensor for early lung cancer diagnosis

Researchers from the University of Exeter have developed a new technique that could create a highly sensitive graphene biosensor with the capability to detect molecules of the most common lung cancer biomarkers.

Graphene biosensor for early lung cancer diagnosis image

The new biosensor design could revolutionize existing electronic nose (e-nose) devices, that identify specific components of a specific vapor mixture—like a person's breath—and analyze its chemical make-up to identify the cause.

Graphene crinkles can be used as 'molecular zippers'

Scientists have noticed many years ago that when buckyballs (soccer ball shaped carbon molecules) are thrown onto a certain type of multilayer graphene, they spontaneously assemble into single-file chains that stretched across the graphene surface. Now, researchers from Brown University have explained how the phenomenon works, and that explanation could pave the way for a new type of controlled molecular self-assembly.

Graphene crinkles can be used as 'molecular zippers' imageBUCKYBALLS LINED UP ON A LAYERED GRAPHENE SURFACE

The Brown team shows that tiny, electrically charged crinkles in graphene sheets can interact with molecules on the surface, arranging those molecules in electric fields along the paths of the crinkles.

University of Manchester researcher develops GO coating that makes living cells and tissues more visible

University of Manchester researcher, Dr Thomas Waigh, has developed a technology that may make living cells and tissues more visible during analysis through the addition of graphene oxide (GO). The use of a GO GO coating to microscopy slides was found to improve both fluorescence imaging contrast and resolution.

University of Manchester researcher develops GO coating that makes living cells and tissues more visible

Dr Waigh said: “My team has developed technology which uses monomolecular sheets of GO to coat microscopy slides, thereby eliminating background fluorescence and improving the resolution of images”. "It’s an important breakthrough as GO is cheap and easy to manufacture in large quantities. The cost to coat each slide is estimated to be 12 pence".

Graphene-based implant that records brain activity at low frequencies may change our understanding of the brain

Researchers from ICN2, IMB-CNM, CSIC, IDIBAPS, and ICFO have designed a graphene-based implant able to record electrical activity in the brain at extremely low frequencies and over large areas.

Graphene-based implant that records brain activity at low frequencies may change our understanding of the brain image

The team explains that electrode arrays currently used to record the brain’s electrical activity are only able to detect activity over a certain frequency threshold. The new graphene-based technology presented in this work overcomes this technical limitation, allowing access to information found below 0.1 Hz, while at the same time paving the way for future brain-computer interfaces.

NYU team's findings on defects in graphene to benefit environmental and medical sensors

A team of NYU researchers has tackled the longstanding question of how to build ultra-sensitive, ultra-small electrochemical sensors with homogeneous and predictable properties, by discovering how to engineer graphene structure on an atomic level. The team's findings could benefit biochemical detection, environmental monitoring, and lab-on-a-chip applications

Finely tuned electrochemical sensors (also referred to as electrodes) that are as small as biological cells have tremendous potential for medical diagnostics and environmental monitoring systems. However, efforts to develop them have encountered obstacles, like the lack of quantitative principles to guide the precise engineering of the electrode sensitivity to biochemical molecules.