Researchers show that graphene quantum dots can block SARS-CoV-2 Variant from entering cells

A recent study has reported the use of human host defense peptide-conjugated graphene quantum dots for the prevention of virus entry into host cells.

Research on the SARS-CoV-2 virus mainly focuses on the spike protein (S1) which contains the receptor-binding domain (RBD) and the binding of this to the angiotensin converting enzyme 2 (ACE2) receptor within epithelial cells enables the virus to enter host cells in humans. This research resulted in the spike protein becoming a target for vaccines that aimed to produce neutralizing antibodies against the S-RBD. But while this concept seemed useful, recent reports have suggested the mutations on the SARS-CoV-2 virus and specifically in the S-RBD, can cause a decline in the level of neutralizing antibodies against the delta (B.1.617.2) variant that may have been produced during a previous infection or from immunization via a vaccine.

Researchers design a graphene-based sensor that can detect opioids in wastewater

Researchers from Boston College, Boston University, and Giner Labs have designed a small graphene-based multiplexed bio-sensor that detects opioid byproducts in wastewater.

Graphene sensor rapidly detects opioids in wastewater image

The novel device uses graphene-based field effect transistors to detect four different synthetic and natural opioids at once, while shielding them from wastewater’s harsh elements. When a specific opioid metabolite attaches to a molecular probe on the graphene, it changes the electrical charge on the graphene. These signals are easily read electronically for each probe attached to the device.

Cambridge Raman Imaging selected to coordinate a European Union grant to transform cancer diagnosis and treatment

Cambridge Raman Imaging (CRI) has announced it was selected to coordinate a project that received a €3.3 million grant in the European Innovation Council’s (EIC) Transition call.

The project, called CHARM, aims to develop a medical device based on high-speed, low-cost Raman digital imaging technology and artificial intelligence to transform cancer diagnosis and treatment. The technology will analyze the molecular composition of patient tissue samples to distinguish cancerous from healthy cells without the need for chemical staining.

Researchers develop new graphene-based sensor for rapid detection of bacterial pathogens

A research group from Sweden's Chalmers University of Technology and the Technical University of Denmark has shown that graphene can rapidly distinguish between types of bacteria. The team therefore set out to create extremely sensitive sensors, that can generate rapid signals upon bacterial colonization.​

The team developed a simple prototype sensor based on pristine, non-functionalized graphene. The detection principle is a change in electrical resistance of graphene upon exposure to bacterial cells. Without functionalization with specific receptors, such sensors cannot be expected to be selective to certain bacteria. However, the researchers demonstrated that two different bacterial species can be detected and differentiated by the new sensor due to their different growth dynamics, adherence pattern, density of adhered bacteria and microcolonies formation.

Zentek enters agreement with GMAF Circular Medico for graphene-enhanced Circular PPE

Zentek has announced that it has entered into a binding letter of intent with GMAF Circular Medico ApS (“GMAF”) to produce and sell ZENGuard™-enhanced GMAF trademarked recyclable surgical masks (“Circular PPE”).

Zentek’s Medical Device Establishment License (“MDEL”) allows the Company to work with other manufacturers and distributors around the world to sell Class I PPE products in the Canadian market. Pursuant to the terms of the LOI, ZEN and GMAF have agreed to negotiate a definitive agreement to bring Circular PPETM coated with ZENGuard™ to the Canadian market while also evaluating regulatory requirements in other target markets. Commercial sales of Circular PPETM with ZENGuard™ outside of Canada will be subject to applicable regulatory approvals.