MIT team uses graphene to create improved membranes

Jun 29, 2017

Researchers from MIT have fabricated a functional dialysis membrane from a sheet of graphene. The team’s membrane is able to filter out nanometer-sized molecules from aqueous solutions up to 10 times faster than state-of-the-art membranes, with the graphene itself being up to 100 times faster. The graphene membrane is also very thin; It's less than 1 nanometer thick, while the thinnest existing membranes are about 20 nanometers thick.

MIT's graphene membrane image

Dialysis can be generally described as the process by which molecules filter out of one solution by diffusing through a membrane, into a more dilute solution. The most recognizable form is hemodialysis, which removes waste from blood, but scientists also use dialysis for many other applications, like purifying drugs, removing residue from chemical solutions, and more, typically by allowing the materials to pass through a porous membrane.

Researchers from India use graphene oxide to design a novel anti-cancer system

Jun 25, 2017

Researchers at the Indian Institute of Science Education and Research (IISER) Pune have used graphene oxide to develop a novel cancer drug delivery system. The researchers' achievement relies on a rather surprising revelation - they found that when a FDA-approved anticancer drug cisplatin was added, the graphene oxide sheets self-assembled into spherical nanoparticles enclosing the drug within.

Lab tests showed that the nanoparticles (of 90-120 nanometre in size) containing cisplatin and either of two other anticancer drugs ( proflavine and doxorubicin) were taken up by cervical cancer cells leading to programmed cell death.

Graphene to enhance the quality of electron microscopy images

Jun 12, 2017

Researchers at the Okinawa Institute of Science and Technology (OIST) have reported that using graphene film managed to drastically enhance the quality of electron microscopy images.

OIST microscope image

Electron microscopes rely on an electron beam (rather than light) to illuminate the target sample. The electron beam hits the sample, and the resulting scattering of the electrons allowing scientists to build an accurate image of the target. This newly developed, unique microscope does not even rely on optical lenses any longer, instead using a detector to reveal which electrons hit the tiny virus samples and reconstructing the image through a computer algorithm. Moreover, while conventional electron microscopes require high-energy electrons, this microscope focuses on low-energy electrons which can potentially be much more efficient at imaging viruses if the associated technical issues can be overcome.

Graphene-based biological supercapacitors may enable improved pacemakers and implantable medical devices

May 24, 2017

Researchers from UCLA and the University of Connecticut have designed a biological supercapacitor which operates using ions derived from bodily fluids. The team predicts that this work could lead to longer-lasting cardiac pacemakers and other implantable medical devices.

The biosupercapacitor, which features graphene layered with modified human proteins as an electrode, could be used in next-generation implantable devices to speed bone growth, promote healing or stimulate the brain.

Graphene doubles as bacteria zapper and surface cleaner

May 24, 2017

Researchers at Rice University and Ben-Gurion University of the Negev in Israel (BGU) have shown that laser-induced graphene LIG (that was invented at Rice) is a highly effective anti-fouling and anti-biofouling material (that protects surfaces from the buildup of microorganisms, plants or other biological material on wet surfaces), and, when electrified, also serves as a bacteria zapper.

Rice and BGU turn LIG into antibacterial and antifouling material image

“This form of graphene is extremely resistant to biofilm formation, which has promise for places like water-treatment plants, oil-drilling operations, hospitals and ocean applications like underwater pipes that are sensitive to fouling,” Prof. James Tour says. “The antibacterial qualities when electricity is applied is a great additional benefit”.

Versarien - Think you know graphene? Think again!Versarien - Think you know graphene? Think again!