Supercomputer models graphene-water interaction

Researchers at the New Jersey Institute of Technology (NJIT) used the Comet supercomputer at the San Diego Supercomputer Center (SDSC), located at the University of California San Diego, to create detailed simulations of graphene-water interactions, to determine if graphene is a good candidate for delivering medicine to a specific part of the body.

Cross-sectional view of seven graphene flakes in a water droplet imageA simulation done using SDSC’s Comet supercomputer shows a cross-sectional view of seven graphene flakes in a water droplet, and that the multi-layered graphene eventually merges together. Credit: Solanky et al.

While graphene has been extensively studied for many years in water-based solutions, especially in the biomedical sciences field, researchers say they still need to better predict the surface traits of such two-dimensional materials when exposed to water or liquids containing water.

Dotz Nano shows graphene quantum dots to be effective in treating brain injuries, strokes and heart attacks

Dotz Nano has shared a new research that finds its graphene quantum dots (GQDs) technology effective in treating brain injuries, strokes, multiple sclerosis and heart attacks. According to the company, the study demonstrated that these dots, manufactured from coal, can assist in fighting oxidative stress to assist in treating patients suffering from the serious conditions.

Led by the Company's scientific advisor, Professor James Tour, the study was conducted by five universities and research facilities including Rice University, with the findings covered by multiple medical publications.

Graphene tackles corrosion issues of neurostimulation devices

Purdue University researchers have found that adding a graphene monolayer to devices that protect the platinum microelectrodes of implantable neurostimulation devices can improve the lifetime and reliability of such devices, for the benefit of millions of people who suffer from neurological diseases.

"I know from my industry experience that the reliability of implantable devices is a critical issue for translating technology into clinics," said Hyowon "Hugh" Lee, an assistant professor in Purdue's College of Engineering and a researcher at the Birck Nanotechnology Center, who led the research team. "This is part of our research focusing on augmenting and improving implantable devices using nano and microscale technologies for more reliable and advanced treatments. We are the first ones that I know of to address the platinum corrosion issue in neurostimulation microelectrodes". The team has shown the graphene monolayer to be an effective diffusion barrier and electrical conductor.

Graphene biosensors detect cancer causing bacteria

Researchers at Osaka University have invented a graphene-based biosensor to detect bacteria such as those that attack the stomach lining and that have been linked to stomach cancer. When the bacteria interact with the biosensor, chemical reactions are triggered which are detected by the graphene.

Graphene-based sensors detect cancer-causing bacteria image

To enable detection of the chemical reaction products, the researchers used microfluidics to contain the bacteria in extremely tiny droplets close to the sensor surface.

Graphene-based wearable sensor monitors heart activity accurately and comfortably

Researchers at The University of Texas at Austin have developed a graphene-based wearable device that can be placed on the skin to measure a variety of body responses, from electrical to biomechanical signals.

New graphene-based sensor monitors heart activity accurately image

The device is so lightweight and stretchable that it can be placed over the heart for extended periods with little or no discomfort. It also measures cardiac health in two ways, taking electrocardiograph and seismocardiograph readings simultaneously. The electrocardiogram (ECG) technique, a method that records the rates of electrical activity produced each time the heart beats. is rather well-known. Seismocardiography (SCG), a measurement technique using chest vibrations associated with heartbeats, is a bit less so. Powered remotely by a smartphone, the e-tattoo is the first ultrathin and stretchable technology to measure both ECG and SCG.