Graphene and gold join to promote ultrasensitive biosensors for disease detection

Researchers in the University of Minnesota College of Science and Engineering have developed a unique new device using graphene that provides the first step toward ultrasensitive biosensors to detect diseases at the molecular level with excellent efficiency.

Ultrasensitive biosensors for probing protein structures could greatly improve diagnosis of a wide variety of diseases extending to both humans and animals. These include Alzheimer’s disease, Chronic Wasting Disease, and mad cow disease—disorders related to protein misfolding. Such biosensors could also lead to improved technologies for developing new pharmaceutical compounds.

Graphene and silk used to create electronic tattoos

Researchers at Tsinghua University designed graphene-based e-tattoos that act as biosensors. The sensors can collect data related to the user's health, such as skin reactions to medication or to assess the degree of exposure to ultraviolet light.

The use of graphene aids the collection of electric signals and also imparts material properties to the sensors, allowing them to be bent, pressed, and twisted without any loss to sensors functionality. The new sensors have reportedly shown – via as series of tests – good sensitivity to external stimuli like strain, humidity, and temperature. The basis of the sensor is a material matrix composed of a graphene and silk fibroin combination.

Rice and BGU present a range of exciting new graphene-enhanced composite materials

The labs of Rice University chemist James Tour and Christopher Arnusch, a professor at Ben-Gurion University of the Negev in Israel, introduced a batch of graphene-enhanced composites that can be a step towards more robust packages.

Rice and BGU present a range of exciting new graphene-enhanced composite materials

By infusing laser-induced graphene with plastic, rubber, cement, wax or other materials, the lab made composites with a wide range of possible applications. These new composites could be used in wearable electronics, in heat therapy, in water treatment, in anti-icing and deicing work, in creating antimicrobial surfaces and even in making resistive random-access memory devices.

Korean researchers fabricate ordered graphene quantum dot arrays

A new study led by the Ulsan National Institute of Science and Technology in South Korea reveals a technology capable of fabricating highly ordered arrays of graphene quantum dots.

Korean researchers fabricate ordered graphene quantum dot arrays imageGraphene quantum dots of various sizes in a stable, ordered array

The research team demonstrated a novel way of synthesizing GQDs, embedded inside a hexagonal boron nitride (hBN) matrix. Thus, they demonstrated simultaneous use of in-plane and van der Waals heterostructures to build vertical single-electron tunneling transistors.

Graphene biosensor for early lung cancer diagnosis

Researchers from the University of Exeter have developed a new technique that could create a highly sensitive graphene biosensor with the capability to detect molecules of the most common lung cancer biomarkers.

Graphene biosensor for early lung cancer diagnosis image

The new biosensor design could revolutionize existing electronic nose (e-nose) devices, that identify specific components of a specific vapor mixture—like a person's breath—and analyze its chemical make-up to identify the cause.