Directa Plus launches graphene-enhanced masks

Directa Plus has announced that its G+ graphene-enhanced facemasks, Co-mask, are now available for retail sale at a new, dedicated website.

Directa Plus' new graphene masks image

“Since the dangers of COVID-19 first started to become apparent, Directa Plus has been determined to help with the fight against the disease, and to use the unique properties of graphene and the strength of Directa Plus’s IP portfolio to enhance personal protective equipment. The company redirected effort and resources in its Advanced Development Area, R&D facility, to achieve this,” Directa Plus said in a statement.

U.S researchers design new graphene-based printed sensors to monitor food safety

Researchers at Iowa State University and Northwestern University have developed graphene sensors that are printed with high-resolution aerosol jet printers on a flexible polymer film and tuned to test for histamine, an allergen and indicator of spoiled fish and meat.

Researchers are using aerosol-jet-printing technology to create graphene biosensors that can detect histamine imageImage courtesy of Jonathan Claussen, taken from Iowa State University's website

The U.S. Food and Drug Administration has set histamine guidelines of 50 parts per million in fish, while the sensors were found to detect histamine down to 3.41 parts per million. This validates that the sensors are more than sensitive enough to track food freshness and safety.

VFD technology enables next-gen bacteria detection using graphene oxide

Collaborative research between Flinders University's Institute for NanoScale Science and Technology and the Centre for Health Technologies at the University of Technology Sydney has used VFD technology to enable the preparation of a new generation of aggregation-induced emission dye (AIE) luminogens using graphene oxide (GO).

Traditional fluorescent dyes to examine bacteria viability are toxic and suffer poor photostability, so researchers are constantly looking for alternatives. Using the VFD to produce GO/AIE probes with the property of high fluorescence is said to be very promising—with the new GO/AIE nanoprobe having 1400% brighter fluorescent performance than AIE luminogen alone.

EU-funded ATTRACT consortium presents its support of several graphene projects

The MULTIMAL research project is developing a small device that can be used to rapidly identify malaria parasites using saliva samples, without the need for lab equipment. MULTIMAL is one of eight projects exploring new uses for graphene with support from ATTRACT, a €20 million EU-funded, CERN-led consortium, which has awarded 170 grants worth €100,000 each for one-year proof-of-concept technology projects.

Today’s portable malaria testing kits are “just above flipping a coin,” because they are right only 60 percent of the time, says MULTIMAL principal investigator Jérôme Bôrme. The disease, which the World Health Organisation says killed 435,000 people in 2017 (nearly all of them in Africa), is caused by five species of parasite that can be easily identified in a lab. But treating the disease in remote towns and villages is difficult because of the lack of reliable portable testing kits, explains Bôrme, MULTIMAL’s principal investigator and staff researcher at the International Iberian Nanotechnology Laboratory in Portugal, which runs MULTIMAL in collaboration with the University of Minho.

Researchers 3D print graphene-based electrodes that can detect toxins in food

A team of researchers from Nanyang Technological University, University of Chemistry and Technology Prague, and the King Saud University have 3D printed graphene-based electrodes capable of detecting mycotoxin zearalenone (aka ZEA, poisonous secondary metabolites) in food. The scientists believe their study could pave the way for a novel method of food safety assurance.

Schematic representation of the fabrication from graphene/polylactic acid filaments of 3D-printed graphene electrodes and their pre-treatment for the detection of ZEA image

According to the study, contaminated products can lead to cancer or even death in humans. For this reason, timely and reliable methods of detecting mycotoxins are crucial for food inspectors to mitigate the spread and keep the products in food storage facilities safe until they reach the shelf.