Graphene to enable next-gen reflective-type displays that operate faster and at much higher resolution than currently possible

A joint collaboration of researchers from SCALE Nanotech, Graphenea and TU Delft have used graphene to make reflective-type displays that operate faster and at much higher resolution than existing technologies.

Graphene to enable next-gen reflective-type displays that operate faster and at much higher resolution than currently possible image2500ppi GIMOD prototype showcased at the Mobile World Congress. Credit: Graphene Flagship

Displays consume the most power in electronic gadgets. Portable devices like smartphones and VR visors therefore require most of the energy from batteries. As an alternative solution, reflective-type displays (like those in e-book readers) consume much less power, though they cannot deliver video. Reflective displays that offer the specifications of standard technologies (OLED, LCD) do not exist yet, but graphene may open the door to such possibilities.

Graphenea launches new foundry service

Graphenea recently launched a graphene foundry service – GFAB. The company will manufacture custom circuit designs on graphene wafers up to 6”. The service is aimed at enabling fast device prototyping and accelerating development of new applications, lowering entry barriers to graphene-based solutions.

Graphenea launches new foundry service image

Graphenea states that in view of the market demands, the offer now includes small batch sizes (1-3 wafers). Lithography masks can be manufactured by Graphenea or provided by the customer. GFAB includes graphene growth, transfer on 4” and 6” wafers, metal contact deposition and lift-off, and graphene lithography with etching.

Impressions from the 2018 Graphene Week in San Sebastian

The Graphene-Info team attended this year's Graphene Week, organized by the Graphene Flagship in San Sebastian, Spain, 10-14 September 2018. The event attracted over 600 visitors from all over the world, and was extremely well organized.

While the talks and lectures were clearly scientifically-oriented, the commercial angle was also evident and many institutes and companies were there to show their recent product advancements. The Graphene Flagship's booth held a fascinating array of exhibits: graphene-enhanced retina and neural prosthesis (biomedical devices) by the ICN2 as a part of Braincom, Airbus' graphene composite for the leading edge of the tail of the Airbus A350, Nokia, Ericsson and AMO's graphene-based modulators and photodetectors for optical communications, a prosthetic robotic hand enhanced with graphene nerve sensors by the IIT, University of Cambridge's insole graphene-based pressure sensor and more.

Graphenea and MIT develop sensors based on graphene and porphyrins for ammonia detection

MIT and Graphenea have developed an array of graphene sensors for sensitive and selective detection of ammonia. The array consists of 160 graphene pixels, allowing large statistics that result in improved sensing performance. The sensors are extensively tested for various real-life operational conditions, which seems to be a step forward to practical use.

Graphenenea and MIT's graphene and porphyrins sensors for ammonia detection image

The sensors are built by attaching porphyrins, a class of organic molecules, to the graphene surface. Porphyrins are particularly well-matched to graphene sensors because they provide excellent sensitivity while producing minimal perturbation to graphene’s outstanding electrical properties. When ammonia molecules attach to porphyrins, the compound becomes a strong dipole that changes electrical properties of the graphene. This electrical change is detected as a sign of the presence of ammonia.