Graphene/hBN SQUID detects even the faintest magnetic fields

Researchers at the University of Basel in Switzerland, Budapest University of Technology and Economics in Hungary and National Institute for Material Science in Japan have developed a new, super-small device that is capable of detecting minute magnetic fields.

Conventional vs. new SQUID imageA conventional SQUID (left) and the new SQUID (right). (University of Basel, Department of Physics)

The device, a new kind of superconducting quantum interference device (SQUID), is just 10 nanometres high, or around a thousandth of the thickness of a human hair. It's made from two layers of graphene – making it one of the smallest SQUIDs ever built – separated by a very thin layer of boron nitride.

Graphene acts as superconductor, insulator and ferromagnet in a single device

A collaborative group of scientists has designed a device that makes use of graphene’s assorted talents: superconducting, insulating, and a type of magnetism called ferromagnetism. The multitasking device could enable new physics experiments, such as research in the pursuit of an electric circuit for faster, next-generation electronics like quantum computing technologies.

The graphene deviceon a silicon dioxide/silicon chip imageAn optical image of the graphene device (shown above as a square gold pad) on a silicon dioxide/silicon chip. Shining metal wires are connected to gold electrodes for electrical measurement. (Credit: Guorui Chen/Berkeley Lab)

“So far, materials simultaneously showing superconducting, insulating, and magnetic properties have been very rare. And most people believed that it would be difficult to induce magnetism in graphene, because it’s typically not magnetic. Our graphene system is the first to combine all three properties in a single sample,” said Guorui Chen, a postdoctoral researcher in Wang’s Ultrafast Nano-Optics Group at UC Berkeley, and the study’s lead author.

Stanford team finds novel form of magnetism in twisted bi-layer graphene

Stanford physicists recently observed a novel form of magnetism, predicted but never seen before, that is generated when two graphene sheets are carefully stacked and rotated to a special angle. The researchers suggest the magnetism, called orbital ferromagnetism, could prove useful for certain applications, such as quantum computing.

bi-layer graphene between hBN gives off orbital ferromagnetism imageOptical micrograph of the assembled stacked structure, which consists of two graphene sheets sandwiched between two protective layers made of hexagonal boron nitride. (Image: Aaron Sharpe)

“We were not aiming for magnetism. We found what may be the most exciting thing in my career to date through partially targeted and partially accidental exploration,” said study leader David Goldhaber-Gordon, a professor of physics at Stanford’s School of Humanities and Sciences. “Our discovery shows that the most interesting things turn out to be surprises sometimes.”

Graphene enables researchers to control infrared and terahertz waves

Researchers from the University of Geneva (UNIGE) in Switzerland and the University of Manchester in the UK have found an efficient way to control infrared and terahertz waves using graphene. "There exist a class of the so-called Dirac materials, where the electrons behave as if they do not have a mass, similar to light particles, the photons," explains Alexey Kuzmenko, a researcher at the Department of Quantum Matter Physics in UNIGE's Science Faculty, who co-conducted this research together with Ievgeniia Nedoliuk.

The interaction between graphene and light suggests that this material could be used to control infrared and terahertz waves. "That would be a huge step forward for optoelectronics, security, telecommunications and medical diagnostics," points out the Switzerland-based researcher.

Graphene and cobalt used together to create new electromagnetic devices

Researchers from IMDEA Nanociencia and other European centers have discovered that the combination of graphene with cobalt offers relevant properties in the field of magnetism. This breakthrough sets the stage for the development of new logic devices that can store large data amounts quickly and with reduced energy consumption.

One of the latest technologies for digitally encoding information is spin orbitronics, which not only exploits the charge of the electron (electronics) and its spin (spintronics), but also the interaction of the spin with its orbital motion, offering a multitude of properties.