Stretchable and ultrasensitive NO2 sensors based on rGO and MOS2 nanocomposites

Researchers at Penn State, Northeastern University and five universities in China have developed and tested a stretchable, wearable gas sensor for environmental sensing.

Stretchable, ultrasensitive, and low-temperature NO2 sensors based on MoS2@rGO nanocomposites image

The sensor combines a newly developed laser-induced graphene foam material with a unique form of molybdenum disulfide and reduced-graphene oxide nanocomposites. The researchers were interested in seeing how different morphologies of the gas-sensitive nanocomposites affect the sensitivity of the material to detecting nitrogen dioxide molecules at very low concentration. To change the morphology, they packed a container with very finely ground salt crystals.

Graphene and MoS2 make for a highly light-absorbent and tunable material

Physicists at the University of Basel have created a novel structure with the ability to absorb almost all light of a selected wavelength, by layering different 2D materials: graphene and molybdenum disulfide.

A highly light-absorbent and tunable material made of graphene and MoS2 imageSchematic illustration of the electron-hole pairs (electron: pink, hole: blue), which are formed by absorption of light in the two-layer molybdenum disulfide layer. Credit: Nadine Leisgang and Lorenzo Ceccarelli, Department of Physics, University of Basel

The new structure's particular properties reportedly make it a candidate for applications in optical components or as a source of individual photons, which play a key role in quantum research.

New technique allows for processing surfaces on an atomic scale

Researchers at TU Wien have designed a nano-structuring method, with which certain layers of a material can be perforated with extreme precision while others are left completely untouched, even though the projectile penetrates all layers.

Atomic-Scale Carving of Nanopores into 2D materials imageThe projectile penetrates all layers, but only in the top layer, a big hole is created. The graphene below remains intact. Credit: TU Wien

This is made possible with the help of highly charged ions - they can be used to selectively process the surfaces of novel 2D material systems, for example to anchor certain metals on them, which can then serve as catalysts.

An interview with Patrick Frantz, planarTECH's co-founder and CEO

UK-based planarTECH has launched an equity crowdfunding campaign on Seedrs, as part of Graphene-Info's Graphene Crowdfunding Arena. planarTECH aims to expand its current business and also initiate new graphene endeavors. Investors are now able to participate in this financing round.

Here's our interview with planarTECH's co-founder and CEO, J. Patrick Frantz - who explains the company's technology, business and future plans.

Graphene production systems maker planarTECH launches an equity crowdfunding campaign to support its future growth potential

UK-based planarTECH is launching an equity crowdfunding campaign at on Seedrs, as part of Graphene-Info's Graphene Crowdfunding Arena. planarTECH aims to expand its current business and also initiate new graphene endeavors.

planarTECH, founded in 2014, supplies CVD equipment for the production of high quality graphene sheets, as well as other 2D materials. The company was focused on research institutes, and already sold over 65 systems with a customer list that includes Manchester University, the University of Cambridge, Stanford University and the National University of Singapore.