Graphene enables low-dimensional spintronics at room temperature

Graphene Flagship researchers produced graphene-based spintronics devices that utilize both electron charge and spin at room temperature. Demonstrating the spin’s feasibility for bridging distances of up to several micrometres, these results may open the door to new possibilities for integrating information-processing and storage in a single chip.

The Graphene Flagship program recognizes the potential of spintronics devices made from graphene-related materials. Researchers from different universities successfully showed that it is possible to manipulate graphene’s spin properties in a controlled manner at room temperature. These results inspire new directions in the development of spin-logic devices and quantum computing. “With miniaturization a major driving force behind the electronics industry, graphene opens new possibilities for compacting spin-logic operations with magnetic memory elements in a single platform,” notes Catalan Institution for Research and Advanced Studies (ICREA) Research Professor Stephan Roche, who has been leading the Graphene Flagships Spintronics Work Package since its inception.

Graphene and MoS2 used to create novel artificial retina

Researchers at the University of Texas at Austin and Seoul National University have successfully developed and tested an ultrathin artificial retina, based on graphene and molybdenum disulfide, that could reportedly improve on existing implantable visualization technology for the blind. The flexible device could someday restore sight to the millions of people with retinal diseases. And with a few modifications, the device could be used to track heart and brain activity.

"This is the first demonstration that you can use few-layer graphene and molybdenum disulfide to successfully fabricate an artificial retina," Nanshu Lu, Ph.D., says. "Although this research is still in its infancy, it is a very exciting starting point for the use of these materials to restore vision," she says, adding that this device could also be implanted elsewhere in the body to monitor heart and brain activities.

Researchers use graphene to synthesize "polymer carpets"

Researchers from Tomsk Polytechnic University, along with additional international colleagues, have discovered a method to modify and use graphene without destroying it. Thanks to the method, the researchers were able to synthesize a well-structured polymer with a strong covalent bond on single-layer graphene.

Graphene assists in creating ''polymer carpets'' image

The researchers call the result "polymer carpets". The structure is highly stable and less prone to degradation over time, holding promise for the development of flexible organic electronics. If a layer of molybdenum disulfide is added over this "nanocarpet," the resulting structure generates current under exposure to light.

XFNano’s CEO discusses the company’s business and technology

Mr. Xu Jiang, president and general manager of China’s XFNano, was kind enough to answer a few questions we had for him regarding XFNano’s graphene materials, technology and business. Mr. Jiang founded XFNano in 2009, and he holds a master’s degree from Nanjing University of Posts and Telecommunications.

XFNano Office Building photo

Q: Hello Mr. Jiang, thank you for your time. Can you update us on your graphene production process and facilities?

In 2016, XFNANO put its new production line into operation, which yields an annual production capacity of 50 tons of high-quality graphene powder and 1,000 tons of graphene dispersion. We believe this can meet our customers’ demands for large quantities.

U.S collaboration grows large single-crystal graphene that could advance graphene research and commercialization

A team led by the Department of Energy’s Oak Ridge National Laboratory, that also included scientists from University of Tennessee, Rice University and New Mexico State University, has developed a new method to produce large, monolayer single-crystal-like graphene films more than a foot long. The novel technique may open new opportunities for producing high-quality graphene of unlimited size and in a way that is suitable for roll-to-roll production.

Method to grow large single-crystal graphene could advance scalable 2D materials image

The ORNL team used a CVD method — but with a twist. They explained in this work how localized control of the CVD process allows evolutionary, or self-selecting, growth under optimal conditions, yielding a large, single-crystal-like sheet of graphene. “Large single crystals are more mechanically robust and may have higher conductivity,” ORNL lead coauthor Ivan Vlassiouk said. “This is because weaknesses arising from interconnections between individual domains in polycrystalline graphene are eliminated”. “Our method could be the key not only to improving large-scale production of single-crystal graphene but to other 2D materials as well, which is necessary for their large-scale applications,” he added.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!