UK researchers demonstrate a viable graphene-based OLED encapsulation solution

OLED displays are very sensitive to oxygen and moisture, and the need to protect the displays is one of the major challenges of this next-generation display technology. First generation OLED displays were protected with a glass barrier, but glass is not easily flexible and so cannot be used in flexible OLEDs. Flexible OLEDs are today encapsulation with a thin-film encapsulation layer made from both organic and in-organic materials, and companies are searching for better OLED encapsulation technologies.

Graphene encapsulation research, CPI 2017

Graphene is the world's most impermeable material, and so the idea of using graphene as a barrier layer for OLED has been around for a while. In 2015 the UK launched a collaboration project called Gravia to develop graphene-based encapsulation, and the project's team has now reported their results.

Graphene-based contact lens sensor for diabetes monitoring

Researchers affiliated with UNIST have raised the possibility of in-situ human health monitoring by wearing a contact lens with built-in wireless smart sensors. Towards this end, the team made use of smart contact lens sensors with electrodes made of graphene sheets and metal nanowires.

Graphene lens sensor for disease monitoring image

The smart contact lens sensor could help monitor biomarkers for intraocular pressure (IOP), diabetes mellitus, and other health conditions. The research team expects that this research breakthrough could lead to the development of biosensors capable of detecting and treating various human diseases, and used as a component of next-generation smart contact lens-related electronic devices.

Korea-based ETRI develops OLED display with graphene transparent electrodes

Researchers from the Korea-based ETRI (Electronics and Telecommunications Research Institute) have used graphene transparent electrodes to create an OLED display, 370mm x 470mm in size.

ETRI graphene-electrode OLED prototype, Apr 2017

The ETRI team designed a process that can pattern a graphene-made transparent electrode in accurate size on a glass substrate. The researchers replaced indium tin oxide used for current commercial applications, that is a rare metal known for being brittle.

Polish team creates transparent cryogenic temperature sensor

Researchers from the Lodz University of Technology in Poland have designed a transparent, flexible cryogenic temperature sensor with graphene structures as sensing elements. Such sensors could be useful for any field that requires operating in low-temperatures, such as medical diagnostics, space exploration and aviation, processing and storage of food and scientific research.

Making graphene transparent cryogenic temperature sensors

The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor).

Exeter team unveils novel graphene production method that could accelerate commercial graphene use

Researchers from the University of Exeter have developed a new method for creating entire device arrays directly on the copper substrates used for commercial manufacture of graphene. Complete and fully-functional devices can then be transferred to a substrate of choice, such as silicon, plastics or even textiles.

This new approach is said to be cheaper, simpler and less time consuming than conventional ways of producing graphene-based devices, thus holding real potential to open up the use of cheap-to-produce graphene devices for a host of applications from gas and biomedical sensors to displays.

PlanarTECH - The 2D Materials Solution ProviderPlanarTECH - The 2D Materials Solution Provider