CealTech's marketing and sales manager explains the company's technology and business

Michel Eid (CealTeach)Norway-based CealTech was established in 2012 to commercialize a patented 3D graphene production method. The company recently received its first prototype proprietary industrial-scale Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) graphene production reactor.

We discussed CealTech's technology and business with the company's marketing and sales manager, Michel Eid. Michael holds a Ph.D. in Solid Mechanics from the Ecole Polytechnique in France, and held various roles in engineeing, manufacturing, sustaining, sales, marketing and business development. Michel joined CealTech in January 2017.

Q: Hello Michael. CealTech is commercializing a patented 3D graphene production method. Can you give us some details on the process and the material you are producing?

Our production process is based on David Boyd’s technique as per Nature communications (DOI: 10.1038/ncomms7620), ‘Single-step deposition of high-mobility graphene at reduced temperatures’. In summary, the substrate is directly exposed to a low-pressure, microwave hydrogen plasma containing small amounts of methane as carbon source. During this process, vertical grown graphene flakes nucleate and arrange perpendicularly to the surface of the substrate forming a so-called 3D network of non-agglomerated graphene flakes.

Talga Resources' CEO: 2017 will be a turning point for graphene commercialization

Mark Thompson, Talga Australia-based technology minerals company, Talga Resources, is actively developing graphene materials and graphene-based applications across many areas, including coatings, batteries, construction materials, composites and more.

Mark Thompson, Talga's managing director, was kind enough to update us on Talga's graphene program and answer a few questions we had.

Q: Thank you for this interview, Mark. Can you quickly update us on your graphite mine operation in Sweden?

Talga has over 20 years of graphite mining potential outlined in economic studies to date and currently extracts intermittently what it needs for scale up and testing purposes. Talga mined approximately 5,000 tonnes of graphite ore during 2015-16 trial mining operations. Further extraction is not required for now but permitting for the future larger scale operations is underway.

Updates from Prof. James Tour's graphene lab at Rice University

Prof. James Tour's research lab in Rice University is one of the leading graphene research groups in the world, with several key technologies first discovered and developed there. Professor Tour is involved with several application areas - from de-icing coating to energy storage and quantum dots production. Prof. Tour was kind enough to share his time and update us on the latest research and commercialization efforts at his lab.

rice university laser process supercapacitor image

The Tour group is now commercializing two of its key technologies. First up is the laser-induced graphene (or LiG), which was reported first in 2014. This is a process in which graphene is formed on a flexible polyimide film using a room-temperature laser-based process. It is possible to pattern this graphene to create devices and as it is formed on a flexible film this easily enables flexible electronics applications.

A look into Ionic Industries graphene oxide technology and business

Ionic Industries logoIonic Industries is an Australia-based graphene developer that was spun-off from Strategic Energy Resources (SER still holds 20% in Ionic) in 2015. Ionic Developed a proprietary Graphene Oxide production process and is developing GO-based materials and applications.

Simon Savage, Ionic's Managing Director, was kind enough to discuss the company's technology and the status of Ionic's GO applications.

Nanomedical Diagnostics starts shipping its graphene-based sensors, explains its technology and business to Graphene-Info

San Diego-based Nanomedical Diagnostics, established in late 2013 to develop cutting-edge diagnostics equipment, recently started shipping its graphene-based sensors and the AGILE R100 system which allows for real-time detection of small molecules - with no lower size limit. Nanomedical's graphene-based sensors enable faster sample processing, greater accuracy, portability and cost savings.

Nanomedical Diagnostics Agile R100 photo

TThe company's CEO, Ross Bundy, was kind enough to explain the company's technology and business to us.

XFNANO: Graphene and graphene-like materials since 2009XFNANO: Graphene and graphene-like materials since 2009