"Graphene window" enables precise 3D imaging of nanoparticles

Researchers at Berkeley Lab, in collaboration with the Institute for Basic Science (IBS) in South Korea, Monash University in Australia, and UC Berkeley, have developed a technique that produces atomic-scale 3D images of nanoparticles tumbling in liquid between sheets of graphene.

This is an exciting result. We can now measure atomic positions in three dimensions down to a precision six times smaller than hydrogen, the smallest atom, said study co-author Peter Ercius, a staff scientist at Berkeley Lab’s Molecular Foundry.

Read the full story Posted: Apr 10,2020

How can graphene assist in the war on Coronavirus?

As researchers and companies all over the world set out to battle the Coronavirus pandemic, many are revisiting graphene as a material with potential for helping to win this fight. The reasons for such potential could be found in graphene's known antibacterial/antiviral properties, its beneficial traits for medical sensors and devices and more.

Graphene has been shown in the past as extremely useful for creating various sensors. Earlier this month, a team led by Boston College researchers used a sheet of graphene to track the electronic signals inherent in biological structures, in order to develop a platform to selectively identify deadly strains of bacteria. In October 2019, Rice University team under chemist James Tour transformed their laser-induced graphene (LIG) into self-sterilizing filters that grab pathogens out of the air and kill them with small pulses of electricity. Commercially sold graphene-based sensors exist, like the graphene oxide (GO) sensor developed by the ICN2 Nanobioelectronics and Biosensors group that was added in 2016 to the list products offered by Biolin Scientific, a prestigious instrumentation company devoted to the production of analytical devices. The Q-Sense GO sensor enables interaction studies of GO with various analytes (measured substances) of interest and may open the door to various applications with interest for diagnostics, safety/security and environmental monitoring.

Read the full story Posted: Mar 24,2020

planarTECH releases investor pitch video for its crowdfunding campaign

UK-based planarTECH is launching an equity crowdfunding campaign at on Seedrs, as part of Graphene-Info's Graphene Crowdfunding Arena, and the company now released its first investor video pitch that summarizes the business and technology:

planarTECH is the first company to apply to our Graphene Crowdfunding Arena, and potential investors can currently pre-register for exclusive early access to this campaign. The first step should be to join Seedrs as an investor (which will also enable the participation in future graphene campaigns) and then to apply to planarTECH’s investment page as an interested investor. The company's campaign will go live soon!

Read the full story Posted: Feb 13,2020

Rice team transforms waste into graphene in a flash

A team of researchers at the Rice University lab of chemist James Tour has designed a ‘Green’ process that produces pristine graphene in bulk using waste food, plastic and other materials. According to the team, this process can help facilitate a reduction of the environmental impact of concrete and other building materials.

The new process can turn bulk quantities of just about any carbon source into graphene flakes. The process is quick and cheap; Tour said the flash graphene technique can convert a ton of coal, food waste or plastic into graphene for a fraction of the cost used by other bulk graphene-producing methods.

Read the full story Posted: Jan 28,2020

Rice team creates laser-induced graphene nanogenerators that turn movement into energy

Rice University researchers have recently taken the idea of wearable devices that harvest energy from movement to a new level. Prof. James Tour's lab has adapted laser-induced graphene (LIG) into small, metal-free devices that generate electricity.

Putting the LIG composites in contact with other surfaces produces static electricity that can be used to power devices. This relies on the triboelectric effect, by which materials gather a charge through contact. When they are put together and then pulled apart, surface charges build up that can be channeled toward power generation.

Read the full story Posted: May 31,2019

New graphene fiber combines the electrical properties of an electrode with the mechanical properties of a suture

Engineers at the University of Wollongong are collaborating with surgeons at the University of Texas at Dallas to develop materials that can provide targeted medical treatment. An emerging field called electroceuticals, where electrical stimulation is used to modify the behavior of tissues and organs affected by illness, reportedly shows promise.

Part of this research focuses on utilizing new material developments and additive manufacturing techniques to develop implantable structures that can monitor, maintain and restore function in neural tissues. However, one of the biggest barriers is finding electrode materials that can be safely implanted in the body. Materials like metal are too rigid and can damage tissues.

Read the full story Posted: May 08,2019

The Graphene Light project demonstrates its laser graphene foam lighting device

In May 2017 we reported on a new project at the Institute of Low Temperature and Structure Research (Wroclaw, Poland) that developed a new efficient white light source that uses graphene foam excitated by a continuous-wave laser.

The project is still in progress, and the researchers demonstrated the technology at IDTechEx Graphene & 2D Materials Europe 2019 earlier this month, as can be seen in our video above.

Read the full story Posted: Apr 29,2019

A hands-on review of Wuxi Graphene Film's CVD graphene heating films

China-based Wuxi Graphene Film (owned by Grahope New Materials and The Sixth Element) produces patterned CVD graphene films for heating applications. These films are adopted by several Chinese device makers for different heating products - for example Grahope's graphene eye mask we recently reviewed at Graphene-Info.

The team at Wuxi Graphene Film was kind enough to send a few such films for us to review. These specific films are designed for one of WGF's customers and include a proprietary design which includes a USB connector for easy setup - you just plug these into a USB power source and the films heat up very quickly.

Read the full story Posted: Mar 24,2019

Graphene Composites exceeds crowdfunding target for graphene bulletproof shields

Graphene Composites, a UK-based company developing graphene-enhanced bulletproof shields, has exceeded its crowdfunding target. GC attempted to raise £300,000 on Crowdcube, but ended up raising £510,680 (around 676,625 USD).

Graphene composites bulletproof shield photo

Once Graphene Composites had hit its crowdfunding target, the company sent out a message to its supporters saying: Thank You - by investing in GC, you have not only invested in a company that should provide you with a healthy return and strong dividends, you are also enabling us to develop and deliver products that will truly improve the quality of life for many around the world. For example, our GC Shield active shooter protection in schools now, and eventually our Lightning Harvester renewable energy sources. Thank You, from all of us on the GC Team.

Read the full story Posted: Mar 18,2019

Garmor creates extra strong polymeric coatings and innovative conductive fibers

Garmor, manufacturer of low-cost graphene oxide, rGO and developer of innovative GO production methods, recently developed a graphene-enhanced polymeric coating with a 390% reported improvement in tensile strength. Garmor stated that it is already marketing this technology as it has already been fielded and used in commercial applications. Here's a video showing side-by-side testing of the original polymer (left) and the graphene-enhanced polymer (right) shown at 4X normal speed.

In addition, Garmor announced the development of an innovative process for converting insulating polymeric fibers into electrically conductive fibers with minimal cost and no waste products. The method has resulted in composites with single-digit graphene loadings delivering conductivity as high as .023 S/cm. Garmor sees such performance as ideal for wearable sensors and other applications that require integrated approaches to solving weight and measurement issues.

Read the full story Posted: Jan 02,2019