CharmGraphene starts mass producing CVD graphene using a roll-to-roll process

Korea-based Charmgraphene has started to mass produce CVD graphene, using its proprietary roll-to-roll process.

CharmGraphene CVD graphene on copper and graphene-heater photoCharmGraphene's graphene on copper and heating element

CharmGraphene's R2R production system can produce 2 meters of CVD graphene per minute (maximum width 300 mm). According to CharmGraphene, its current CVD graphene capacity is about 8,000 sqm per month. The company says it uses use 6 um thick copper foil which reduces copper foil etching time dramatically compare to 35 um thickness copper foil used by other companies.

MIT team reports new roll-to-roll process for production of large sheets of high-quality graphene

Researchers at MIT have developed a new roll-to-roll production process for large sheets of high-quality graphene, which the team says could lead to ultra-lightweight, flexible solar cells, and to new classes of light-emitting devices and other thin-film electronics.

MIT develops roll-to-roll process for graphene production image

The new manufacturing process, which the team says should be relatively easy to scale up for industrial production, involves an intermediate “buffer” layer of material that is key to the technique’s success. The buffer allows the ultrathin graphene sheet, less than a nanometer (billionth of a meter) thick, to be easily lifted off from its substrate, allowing for rapid roll-to-roll manufacturing.

LG Electronics to start offering CVD graphene materials

According to our information, LG Electronics is aiming to start supplying CVD graphene materials worldwide soon, with an aim to accelerate the adoption of CVD graphene in various applications. LG is collaborating with research groups to identify new applications for graphene sheets.

Large LG Electronics logo
LG Electronics developed its own roll-to-roll production process in addition to a specific quality control system for its graphene. LG says that its inspection system can manage uniformity deviations in crystal size, defects and electrical properties in its graphene to within 10%.

New laser printing method rapidly and efficiently yields textiles embedded with graphene supercapacitors

Scientists from RMIT University in Melbourne, Australia, have developed a cost-efficient and scalable method for rapidly fabricating textiles that are embedded with energy storage devices. The team reports that in just three minutes, the method can produce a 10x10cm smart textile patch that's waterproof, stretchable and readily integrated with energy technologies like graphene supercapacitors, laser printed directly onto the textiles.

Schematic of the fabrication steps for the laser-printed graphene solar energy storage image

As a proof-of-concept, the researchers connected the supercapacitor with a solar cell, delivering an efficient, washable and self-powering smart fabric that overcomes the key drawbacks of existing e-textile energy storage technologies.

AIXTRON demonstrates new graphene production systems

AIXTRON recently showcased two of its systems, which enable cost effective graphene production for a myriad of applications such as consumer electronics, sensors and photonic applications.

AIXTRON exhibits graphene production systems imageAIXTRON's new 'Neutron' roll to roll system for the production of graphene. Credit: AIXTRON

Graphene Flagship partner AIXTRON introduced results from two of its systems that enable the large-scale production of graphene through chemical vapor deposition (CVD). The Neutron is a roll-to-roll system capable of depositing large areas of graphene on metal foils under ambient conditions; and the CCS 2D system enables wafer-scale production of graphene on insulating wafers, a breakthrough that could speed up the development of new graphene electronics.