AIXTRON demonstrates new graphene production systems

AIXTRON recently showcased two of its systems, which enable cost effective graphene production for a myriad of applications such as consumer electronics, sensors and photonic applications.

AIXTRON exhibits graphene production systems imageAIXTRON's new 'Neutron' roll to roll system for the production of graphene. Credit: AIXTRON

Graphene Flagship partner AIXTRON introduced results from two of its systems that enable the large-scale production of graphene through chemical vapor deposition (CVD). The Neutron is a roll-to-roll system capable of depositing large areas of graphene on metal foils under ambient conditions; and the CCS 2D system enables wafer-scale production of graphene on insulating wafers, a breakthrough that could speed up the development of new graphene electronics.

China-based Shenzhen Danbond begins trials for mass production of graphene film for heat dissipation

A China-based company named Shenzhen Danbond Technology announced that it had begun mass production trials of a self-developed graphene product.

Danbond graphene film for heat dissipation image

The product seems to be a highly-conductive film that can be used in electric vehicle batteries, to dissipate heat in electronic devices and in solar power generation and flexible screens, according to the company. It reportedly plans to begin mass production early next year.

Versarien provides updates on several energy storage R&D fronts

Versarien LogoVersarien, the advanced materials engineering group, has provided an update on its activities in relation to graphene-enhanced power storage devices like batteries and supercapacitors. The primary goal of incorporating graphene into these devices, Versarien says, is to significantly increase power storage capacity and reduce charging times.

Versarien has been working with WMG (Warwick Manufacturing Group) and their partner companies and scientists at the universities of Warwick and Cambridge to collaborate on the production of power storage devices such as batteries and supercapacitors using Versarien's proprietary Nanene graphene nano platelets. Significant advances have been made through incorporating the Company's high quality graphene into these devices and the Company looks forward to commercial products becoming available in due course.

MIT team demonstrates a novel method to mass-produce graphene in long rolls

Researchers at MIT have developed a method that might enable the production of long rolls of high-quality graphene. The continuous manufacturing process can reportedly produce five centimeters of high-quality graphene per minute. The longest run was nearly four hours, and it generated around 10 meters of continuous graphene.

MIT's new graphene production method image

MIT is referring to the development as “the first demonstration of an industrial, scalable method for manufacturing high-quality graphene that is tailored for use in membranes that filter a variety of molecules.” These membranes could be used in biological separation or desalination, for example. The researchers drew from the common industrial roll-to-roll approach blended with chemical vapor deposition, a common graphene-fabrication technique.

U.S collaboration grows large single-crystal graphene that could advance graphene research and commercialization

A team led by the Department of Energy’s Oak Ridge National Laboratory, that also included scientists from University of Tennessee, Rice University and New Mexico State University, has developed a new method to produce large, monolayer single-crystal-like graphene films more than a foot long. The novel technique may open new opportunities for producing high-quality graphene of unlimited size and in a way that is suitable for roll-to-roll production.

Method to grow large single-crystal graphene could advance scalable 2D materials image

The ORNL team used a CVD method — but with a twist. They explained in this work how localized control of the CVD process allows evolutionary, or self-selecting, growth under optimal conditions, yielding a large, single-crystal-like sheet of graphene. “Large single crystals are more mechanically robust and may have higher conductivity,” ORNL lead coauthor Ivan Vlassiouk said. “This is because weaknesses arising from interconnections between individual domains in polycrystalline graphene are eliminated”. “Our method could be the key not only to improving large-scale production of single-crystal graphene but to other 2D materials as well, which is necessary for their large-scale applications,” he added.