Aixtron logoAixtron AG is a provider of deposition equipment to the semiconductor industry. The company's technology solutions are used to build advanced components for electronic and opto-electronic applications based on compound, silicon, or organic semiconductor materials.

For graphene development and production, Aixtron offers the BM Pro systems (previously called Black Magic systems). BM Pro systems can be used to deposit graphene using both chemical vapor deposition (CVD) and plasma enhanced chemical vapor deposition (PECVD).

Aixtron trades in the Frankfurt Stock Exchange, and in the NASDAQ Stock Exchange (AIXG).

Company Address: 
Kaiserstr. 98
D-52134 Herzogenrath

The latest Aixtron graphene news:

AIXTRON's new graphene and hBN industrial grade reactor goes into operation

AIXTRONAixtron logo has developed, built and installed a new, specific industrial grade reactor for graphene and hexagonal Boron Nitride (hBN) processing on 200 mm epi-wafers. The new CVD tool was developed as part of the GIMMIK research project and has recently gone into operation.

The GIMMIK project aims to evaluate the production of graphene layers under industrial conditions, spotting weak points and designing ways of eliminating the sources of error. Furthermore, the transfer of the properties of graphene to electrical components by integration into a material environment are to be tested. In parallel, methods for the large-area, contact-free characterization of graphene will be developed, which do not yet exist at present. The GIMMIK research project aims to expand graphene technology for electronic components and to bring it up to a production-relevant level. Participants of the GIMMIK project include: AIXTRON SE, Infineon Technologies, IHP GmbH - Leibniz-Institut für innovative Mikroelektronik, Protemics, LayTec, RWTH Aachen.

End-to-end processing chain of 2D materials successfully demonstrated as part of project "HEA2D"

Project "HEA2D", which started in 2016 and set out to investigate the production, qualities, and applications of 2D nanomaterials, recently demonstrated end-to-end processing chain of two-dimensional nanomaterials. The project is a collaboration between AIXTRON, AMO, Coatema, Fraunhofer and Kunststoff-Institut für die mittelständische Wirtschaft (K.I.M.W.).

It was stated that the "HEA2D" consortium successfully demonstrated an end-to-end processing chain of two-dimensional nanomaterials as part of its results. 2D materials integrated into mass production processes have the potential to create integrated and systemic product and production solutions that are socially, economically and ecologically sustainable. Application areas for the technologies developed and materials investigated in this project are mainly composite materials and coatings, highly sensitive sensors, power generation and storage, electronics, information and communication technologies as well as photonics and quantum technologies.

AIXTRON demonstrates new graphene production systems

AIXTRON recently showcased two of its systems, which enable cost effective graphene production for a myriad of applications such as consumer electronics, sensors and photonic applications.

AIXTRON exhibits graphene production systems imageAIXTRON's new 'Neutron' roll to roll system for the production of graphene. Credit: AIXTRON

Graphene Flagship partner AIXTRON introduced results from two of its systems that enable the large-scale production of graphene through chemical vapor deposition (CVD). The Neutron is a roll-to-roll system capable of depositing large areas of graphene on metal foils under ambient conditions; and the CCS 2D system enables wafer-scale production of graphene on insulating wafers, a breakthrough that could speed up the development of new graphene electronics.

Aixtron takes part in “HEA2D” project to investigate the production, qualities, and applications of 2D nanomaterials

Aixtron logoAixtron, a leading provider of deposition equipment, is working together with five partners in the “HEA2D” project to investigate the production, qualities, and applications of 2D nanomaterials.

The joint project is now researching an end-to-end processing chain consisting of various deposition processes for 2D materials, processes for transfer onto plastic foils, and mass integration into plastics components. AIXTRON’s partners for implementing systems technology and integrating materials into plastic molded parts are the Fraunhofer Institute for Production Technology (IPT), Coatema Coating Machinery, and Kunststoff-Institut Lüdenscheid (K.I.M.W.). This work is being supported in terms of nano-analytics and the development of prototype components by the Institutes of “Electronic Materials and Nanostructures” (University of Duisburg-Essen) and “Graphene-based Nanotechnology” (University of Siegen).

Experts roundup: will CVD ever be a viable commercial way to produce graphene?

Graphene-Info is happy to introduce a new feature: Experts Roundup. We asked several graphene professionals to answer a graphene related question. We hope this will prove to be an interesting read and can help shed light on the nooks and cranks of the graphene industry. Enjoy!

Do you think CVD will ever be a viable way to mass produce commercial graphene sheets?

Gonçalo Gonçalves, product marketing specialist, Aixtron: Chemical vapour deposition has been used for several decades in the semiconductor industry to deposit high-quality thin-films. This technique is known to provide superior process reliability and throughput which are key requirements in the manufacturing of integrated circuits. Since 2004, graphene has emerged as a “wonder material” with an impressive number of potential applications across several fields. The discovery of a CVD route to produce graphene has also been an important achievement towards the integration of this carbon nanomaterial into semiconductor devices. With the advance of the graphene field from basic to applied research new and more complex challenges arise, especially in the integration reliability. CVD technique will find its way to mass production of graphene once these challenges are addressed and the benefits of graphene in semiconductor devices are unveiled.