Nokia logoNokia, based in Finland is a large multinational corporation and was once the world's leading mobile phone maker. Nokia Research Center, with its 10 laboratories world-wide, is exploring new technologies mostly for mobility applications.

Nokia is involved with graphene research for several applications and the company takes part in the European €1 billion Graphene Flagship research project.

Company Address: 
Keilalahdentie 4
1 Espoo

The latest Nokia graphene news:

Graphene shows promise for high-speed optical communications

Researchers affiliated with the Graphene Flagship have demonstrated novel high-speed graphene-based data communication at a data rate of 50 Gb/s. Integrating graphene sheets into silicon photonics could form the basis for next-generation data communications.

Graphene's spectacular performance in high-speed optical communications image

The project was a collaboration between Flagship partners AMO GmbH (Germany), the National Inter-University Consortium for Telecommunications (CNIT) (Italy), Ericsson (Sweden), Ghent University (Belgium), the Institute of Photonic Sciences (ICFO) (Spain), imec (Belgium), Nokia (Germany and Italy), the Vienna University of Technology (TU Wien) (Austria) and the University of Cambridge (UK).

Graphene electronics: commercialisation outlook for 2019

This is a guest post by Guillaume Chansin

Graphene is probably the most hyped material of the past decade, but so far commercial applications have been limited. Graphene is mostly used as an additive inside composites and plastics to enhance their thermal or structural properties. In the most recent high profile case, Huawei announced the integration of a passive graphene cooling film to improve heat management inside one of their smartphones. While this is a useful use of graphene, it is a far cry from the disruptive electronics that were promised when the material was first isolated.

It is worth considering that both investments and patent filings in graphene peaked in 2015. Nearly four years later, we can expect to see some of these to start paying off with some product launches.

Graphenea, Nokia and IEMN-CNRS collaborate to create high-frequency graphene transistors on flexible substrates

Scientists from IEMN-CNRS, Graphenea, and Nokia have demonstrated flexible graphene transistors with a record high cut-off frequency of 39 GHz. The graphene devices, made on flexible polymer substrates, are stable against bending and fatigue of repeated flexing.

The graphene field effect transistor (GFET) is made from high quality CVD grown graphene with a carrier mobility of ~2500 cm2 V-1 s-1 on a flexible Kapton substrate with a thin alumina dielectric spacer in the channel region. The use of such sophisticated and optimized materials leads to the record high frequency performance as well as stability against bending. The GFET reportedly continues to operate even after 1,000 bending cycles and can be flexed to a radius of 12 mm with a cutoff frequency shift of up to 10%.

Graphene enables ultrahigh sensitivity infrared detectors

Researchers from the Graphene Flagship, working at the University of Cambridge (UK), Emberion (UK), the Institute of Photonic Sciences (ICFO; Spain), Nokia UK, and the University of Ioannina (Greece) have developed a novel graphene-based pyroelectric bolometer - an infrared (IR) detector with record high sensitivity for thermal detection, capable of resolving temperature changes down to a few tens of µK. This work may open the door to high-performance IR imaging and spectroscopy.

Cambridge team develops sensitive IR bolometer

The technology is focused on the detection of the radiation generated by the human body and its conversion into a measurable signal. The key point is that using graphene, the conversion reaches performance more than 250 times better than the best sensor already available. But the high sensitivity of the detector could be of use for spectroscopic applications beyond thermal imaging. With a high-performance graphene-based IR detector that gives a strong signal with less incident radiation, it is possible to isolate different parts of the IR spectrum. This is of key importance in security applications, where different materials – explosives, for instance – can be distinguished by their characteristic IR absorption or transmission spectra.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!