Graphene research groups from Manchester University win £70,000 award

Two teams from the University of Manchester are the winners of a £70,000 prize for novel applications of graphene. Both teams are addressing key societal challenges on future energy and food security: seeking breakthroughs by using 2D materials to produce hydrogen to generate energy, and by designing polymer hydrogels to increase food production.

The Eli and Britt Harari Enterprise Award, in association with Nobel Laureate Sir Andre Geim, is awarded each year to help commercialize graphene concepts from Manchester University students, researchers and graduates. The prize is supported by former Manchester physics student, Dr. Eli Harari, founder of global flash-memory giant, SanDisk

End-to-end processing chain of 2D materials successfully demonstrated as part of project "HEA2D"

Project "HEA2D", which started in 2016 and set out to investigate the production, qualities, and applications of 2D nanomaterials, recently demonstrated end-to-end processing chain of two-dimensional nanomaterials. The project is a collaboration between AIXTRON, AMO, Coatema, Fraunhofer and Kunststoff-Institut für die mittelständische Wirtschaft (K.I.M.W.).

It was stated that the "HEA2D" consortium successfully demonstrated an end-to-end processing chain of two-dimensional nanomaterials as part of its results. 2D materials integrated into mass production processes have the potential to create integrated and systemic product and production solutions that are socially, economically and ecologically sustainable. Application areas for the technologies developed and materials investigated in this project are mainly composite materials and coatings, highly sensitive sensors, power generation and storage, electronics, information and communication technologies as well as photonics and quantum technologies.

Rice team creates laser-induced graphene nanogenerators that turn movement into energy

Rice University researchers have recently taken the idea of wearable devices that harvest energy from movement to a new level. Prof. James Tour's lab has adapted laser-induced graphene (LIG) into small, metal-free devices that generate electricity.

Putting the LIG composites in contact with other surfaces produces static electricity that can be used to power devices. This relies on the triboelectric effect, by which materials gather a charge through contact. When they are put together and then pulled apart, surface charges build up that can be channeled toward power generation.

Bionic mushroom interacts with bacteria and graphene to generate electricity

In a recent study, researchers from the Stevens Institute of Technology in the U.S have come up with an original idea - they designed a bionic mushroom that uses graphene to produce electricity. More accurately, the researchers have generated mushrooms patterned with energy-producing bacteria and an electrode network.

Bionic mushroom generates electricity image

Many examples of organisms that live closely together and interact with each other exist in nature. In some cases, this symbiotic relationship is mutually beneficial. The research team wanted to engineer an artificial symbiosis between button mushrooms and cyanobacteria. In their vision, the mushroom would provide shelter, moisture and nutrients, while bacteria 3D-printed on the mushroom's cap would supply energy by photosynthesis. Graphene nanoribbons printed alongside the bacteria could capture electrons released by the microbes during photosynthesis, producing bio-electricity.

An interview with Graphmatech's CFO, Björn Lindh

Sweden-based Graphmatech develops and produces novel graphene-based nanocomposite materials, under the Aros Graphene brand. The company recently secured an investment from ABB and Walerud Ventures, and the company's CFO, Björn Lindh, was kind enough to answer a few questions we had to him.

Björn Lindh - Graphmatech

Q: Thank you for your time Björn. Can you give us a short introduction to Graphmatech's Aros Graphene materials, and how it differs from other graphene materials on the market?

Graphmatech has invented the novel material, Aros Graphene that keeps most of graphene's features, while making it easy to use in large industrial scales by preventing agglomeration, which is a key challenge for the use of graphene. Aros graphene is produced in powder form and can be used as additive, as coating or even in 3D-printing. The market introduction and launch of first products, filaments and thermal paste, will be introduced to the market in 2019.

Versarien - Think you know graphene? Think again! Versarien - Think you know graphene? Think again!