Pristine graphene could lead to improved solar cells and photodetectors

An international research team, co-led by researchers at the University of California, Riverside, which also included researchers at MIT, Nanyang Technological University, Singapore; Institute of High Performance Computing, Singapore; UC Berkeley; and National Institute for Materials Science, Japan, has found a new mechanism for highly-efficient charge and energy flow in graphene, opening the door to new types of light-harvesting devices.

The researchers made pristine graphene into different geometric shapes, connecting narrow ribbons and crosses to wide open rectangular regions. They found that when light illuminated constricted areas, such as the region where a narrow ribbon connected two wide regions, a large light-induced current, or photocurrent, was detected.

Read the full story Posted: Dec 18,2018

MIT researchers create synthetic cells through controlled fracturing of graphene

MIT engineers recently managed to create cell-sized robots that could collect data about their environment, but were quite tricky to manufacture. Now, the team has found a way to mass produce these synthetic cells (syncells) through controlled fracturing of graphene.

MIT creates synthetic cells through controlled fracturing of graphene image

The previously developed MIT robots were so small, that there was no point trying to steer them, but they could still sense and observe, scanning their surroundings and storing data for long periods of time. Later, they could be filtered out and analyzed to get a reading of water quality, for example, or biomarkers for disease in a patient's bloodstream.

Read the full story Posted: Oct 25,2018

MIT to receive $1,500,000 in funding from the DOE for graphene-enabled solar applications development

MIT recently received $1,500,000 in funding from the U.S. Department of Energy for its project titled "Low-Cost, High-Efficiency III-V Photovoltaics Enabled By Remote Epitaxy through Graphene"

This funding was a part of the Solar Energy Technologies Office Fiscal Year 2018 (SETO FY2018) funding program, which addresses the affordability, flexibility, and performance of solar technologies. The total funding was $53 million for 53 projects.

Read the full story Posted: Oct 24,2018

Researchers develop a technique to fabricate large squares of graphene riddled with controlled holes

Researchers at MIT have found a way to directly pinprick microscopic holes into graphene as the material is grown in the lab. Using this technique, they have fabricated relatively large sheets of graphene (roughly the size of a postage stamp), with pores that could make filtering certain molecules out of solutions vastly more efficient.

Holes would typically be considered unwanted defects, but the MIT team has found that certain defects in graphene can be an advantage in fields such as dialysis. Typically, much thicker polymer membranes are used in laboratories to filter out specific molecules from solution, such as proteins, amino acids, chemicals, and salts. If it could be tailored with selectively-sized pores that let through certain molecules but not others, graphene could substantially improve separation membrane technology.

Read the full story Posted: Oct 11,2018

Graphenea and MIT develop sensors based on graphene and porphyrins for ammonia detection

MIT and Graphenea have developed an array of graphene sensors for sensitive and selective detection of ammonia. The array consists of 160 graphene pixels, allowing large statistics that result in improved sensing performance. The sensors are extensively tested for various real-life operational conditions, which seems to be a step forward to practical use.

Graphenenea and MIT's graphene and porphyrins sensors for ammonia detection image

The sensors are built by attaching porphyrins, a class of organic molecules, to the graphene surface. Porphyrins are particularly well-matched to graphene sensors because they provide excellent sensitivity while producing minimal perturbation to graphene’s outstanding electrical properties. When ammonia molecules attach to porphyrins, the compound becomes a strong dipole that changes electrical properties of the graphene. This electrical change is detected as a sign of the presence of ammonia.

Read the full story Posted: Sep 20,2018

Graphene enables novel thermal camouflage system

Researchers from Bilkent University and Izmir Institute of Technology in Turkey, MIT and University of Manchester have developed a system that can reconfigure its thermal appearance to blend in with varying temperatures in a matter of seconds.

Graphene thermal camouflage system image

Previously, scientists have tried to develop thermal camouflage for various applications, but they have encountered problems such as slow response speed, lack of adaptability to different temperatures and the requirement for rigid materials. The team in this research wanted to develop a fast, rapidly adaptable and flexible material.

Read the full story Posted: Jun 28,2018

Researchers develop graphene-based bolometer that is fast, simple and covers more wavelengths

A team of researchers at MIT, Raytheon BBN Technologies and Columbia University have used graphene to design a fast yet highly sensitive bolometer that can work at room temperature and may even be less expensive. Bolometers are devices that monitor electromagnetic radiation through heating of an absorbing material. Most such devices have limited bandwidth and must be operated at ultralow temperatures, which damages their usefulness.

Fast and simple graphene bolometer image

The findings of this work could help pave the way toward new kinds of astronomical observatories for long-wavelength emissions, new heat sensors for buildings, and even new kinds of quantum sensing and information processing devices, the multidisciplinary research team says.

Read the full story Posted: Jun 12,2018

Researchers develop a graphene-based approach to making light interact with matter

Researchers at MIT and Israel's Technion have used graphene to devise a new way of enhancing the interactions between light and matter, in a work that could someday lead to more efficient solar cells that collect a wider range of light wavelengths, and new kinds of lasers and light-emitting diodes (LEDs) that could have fully tunable color emissions.

Researchers devise new way to make light interact with matter image

The basic principle behind the new approach is a way to get the momentum of light particles (photons) to more closely match that of electrons, which is normally much greater. This huge difference in momentum normally causes these particles to interact very weakly; bringing their momenta closer together enables much greater control over their interactions, which could enable new kinds of basic research on these processes as well as a host of new applications, the researchers say.

Read the full story Posted: Jun 05,2018

MIT team demonstrates a novel method to mass-produce graphene in long rolls

Researchers at MIT have developed a method that might enable the production of long rolls of high-quality graphene. The continuous manufacturing process can reportedly produce five centimeters of high-quality graphene per minute. The longest run was nearly four hours, and it generated around 10 meters of continuous graphene.

MIT's new graphene production method image

MIT is referring to the development as the first demonstration of an industrial, scalable method for manufacturing high-quality graphene that is tailored for use in membranes that filter a variety of molecules. These membranes could be used in biological separation or desalination, for example. The researchers drew from the common industrial roll-to-roll approach blended with chemical vapor deposition, a common graphene-fabrication technique.

Read the full story Posted: Apr 24,2018

Flagship team uses graphene to squeeze light into one atom

Researchers at the Institute of Photonic Sciences (ICFO) in Spain, along with other members of the Graphene Flagship, have reached what they consider to be the ultimate level of light confinement - being able to confine light down to a space of one atom. This may pave the way to ultra-small optical switches, detectors and sensors.

Graphene Flagship team uses graphene to confine light to one atom image

Graphene keeps surprising us: nobody thought that confining light to the one-atom limit would be possible. It will open a completely new set of applications, such as optical communications and sensing at a scale below one nanometer, said ICREA Professor Frank Koppens at ICFO, who led the research.

Read the full story Posted: Apr 23,2018