Applied Graphene Materials launches graphene-enhanced thermally conductive epoxy paste adhesives

Applied Graphene Materials recently added new adhesive materials to their portfolio, aimed at the Space and Defense sectors. These are said to be two unique graphene-enhanced thermally conductive epoxy paste adhesive systems, called AGM TP300 and AGM TP400

These novel epoxy adhesive systems reportedly exhibit high levels of thermal conductivity (between 3 and 6 W/mK), combined with excellent mechanical, adhesive and outgassing performance. Most significantly these properties are achieved with cured resin densities as low as 40% that of competitive conductive adhesives on the market. AGM’s TP 300/400 products are therefore highly versatile, while providing end users with significant savings in both mass and cost.

Read the full story Posted: Sep 10,2019

Haydale receives funding to develop Airbus-approved space technology

Haydale has been awarded a contract by the European Space Agency (ESA), which is seeking to develop non-metallic gas tanks for spacecraft propulsion systems in a technology de-risking project.

The demand for small satellite launches has created a challenge within the existing space propulsion supply chain for low-cost reliable components. With the constellation market set to increase rapidly, the development of components that meet these criteria is critical. Haydale's non-metallic system reportedly offers a low-cost alternative with reduced lead time that can be offered in a wider range of configurations to exactly suit the end user requirement.

Read the full story Posted: Sep 04,2019

Graphene Flagship partners launch rocket to test the possibilities of printing graphene inks in space

Graphene Flagship partners, Université Libre de Bruxelles, University of Pisa and the University of Cambridge, in collaboration with the European Space Agency (ESA) and the Swedish Space Corporation (SSC), recently launched The Materials Science Experiment Rocket (MASER) into space. The objective is to test the printing of graphene patterns on silicon substrates in zero gravity conditions.

New graphene experiment launches into space image

The experiment aims to test the possibilities of printing graphene inks in space. Studying the different self-assembly modes of graphene into functional patterns in zero-gravity will enable the fabrication of graphene electronic devices during long-term space missions, as well as help understand fundamental properties of graphene printing on Earth. This mission is also a first step towards the investigation of graphene for radiation shielding purposes, an essential requirement of manned space exploration.

Read the full story Posted: Jun 25,2019

Purdue team uses graphene foams to power spacecraft

Researchers at Purdue University’s Maurice J. Zucrow Laboratories are developing a new propellant formulation method that will use graphene foams to power spacecraft. The research is reportedly showing success at increasing burn rate of solid propellants that are used to fuel rockets and spacecraft.

Our propulsion and physics researchers came together to focus on a material that has not previously been used in rocket propulsion, and it is demonstrating strong results, said Li Qiao, an associate professor of aeronautics and astronautics in Purdue’s College of Engineering.

Read the full story Posted: Apr 11,2019

Newly designed telescope with graphene sensors to be used in space in the near future

New equipment developed in Brazil - the Solar-T - will be sent to the International Space Station (ISS) to measure solar flares. It is estimated that the Sun-THz, the name given to the new photometric telescope, will be launched in 2022 on one of the missions to the ISS and will remain there to take consistent measurements. The telescope contains graphene sensors that are highly sensitive to terahertz frequencies, able to detect polarization and be adjusted electronically.

The Sun THz is an enhanced version of the Solar-T, a double photometric telescope that was launched in 2016 by NASA in Antarctica in a stratospheric balloon that flew 12 days at an altitude of 40,000 m. The Solar-T captured the energy emitted by solar flares at two unprecedented frequencies: from 3 to 7 terahertz (THz) that correspond to a segment of far infrared radiation. The Solar-T was designed and built in Brazil by researchers at CRAAM together with colleagues at the Center for Semiconductor Components at the University of Campinas (UNICAMP). The new equipment will be the product of a partnership with the Lebedev Physics Institute in Russia.

Read the full story Posted: Feb 22,2019

Graphene/hBN ceramic could act as a sensor for structures and aircraft

Rice University and Iran University of Science and Technology researchers have found a unique ceramic material that could act as a sensor for structures.

Graphene/hBN ceramic could act as a sensor for structures and aircraft image

The ceramic becomes more electrically conductive under elastic strain and less conductive under plastic strain, and could lead to a new generation of sensors embedded into structures like buildings, bridges and aircraft able to monitor their own health.

Read the full story Posted: Feb 06,2019

Graphene Flagship partners present a graphene-enhanced leading edge for the Airbus A350

Graphene Flagship partners Aernnova, Grupo Antolin-Ingenieria and Airbus have produced a leading edge for the Airbus A350 horizontal tail plane using graphene-enhanced composites. As the first part of the tail plane to contact air, the leading edge is subjected to extreme temperatures caused by compressive heating of the air ahead of the wing. Thus, it must possess excellent mechanical and thermal properties.

Graphene Flagship partners produced a leading edge for the Airbus A350 horizontal tail plane using graphene-enhanced composites image

Aernnova supplied the resin to Grupo Antolin-Ingenieria who added graphene directly to the resin and applied milling forces, said Ana Reguero of Aernnova. This creates small graphene particles an important step to get good graphene infiltration within the resin, avoiding unwanted impurities, such as solvents, which can alter the viscosity of the resin. It is important to maintain the correct viscosity of the resin to ensure the optimal outcome during the resin transfer molding of the leading edge.

Read the full story Posted: Dec 30,2018

Versarien to collaborate with Chinese aerospace company

Versarien has announced its plans to enter an agreement with a large state-owned Chinese aerospace company. The Partner is said to mainly be engaged in the research, design, manufacture and operation of various aerospace systems.

The agreement details the parties' desire to collaborate and ultimately enter into a strategic cooperation covering research, development and manufacturing in order to accelerate the industrialization and market for graphene and other Versarien 2D materials, including Hexotene, in the Chinese aerospace sector. This will include exploring their uses within the fields of, amongst others, microwave and electromagnetic radiation shielding, heat dispersion coatings, 3D printing and flexible wearable devices.

Read the full story Posted: Dec 19,2018

Zenyatta provides updates on fund-raising and graphene applications progress

Zenyatta Ventures has announced its plans to raise up to $3,000,000 CAD (around $2,240,000 USD) on a non-brokered private placement basis. The proceeds will be used for bulk sampling, environmental assessment and community engagement.

Zentayya also provided an update on its graphene market development work ,which has led to the creation of five significant potential market verticals for the Company which include aerospace, biomedical, water treatment, transportation and civil engineering.

Read the full story Posted: Dec 12,2018

Thales and M-SOLV develop large-scale spray coating tool for graphene supercapacitors

Graphene Flagship partners Thales and M-SOLV have developed a large-scale spray coating tool, reportedly capable of meeting the high volume manufacturing requirements for high power graphene supercapacitors to be used in aerospace applications.

Thales has been working on incorporating graphene into supercapacitors since the start of the Graphene Flagship and has been able to significantly increase the storage potential of supercapacitor devices. "Using graphene, we have been able to increase the power of supercapacitors by five times. We deposited our supercapacitors using spray coating, enabling us to use a variety of substrates, thus allowing us to develop flexible, high power supercapacitors," said Dr. Paolo Bondavalli, Thales Research and Technology.

Read the full story Posted: Dec 05,2018